【題目】已知二次函數(shù)y=x2+bx+c+1的圖象與x軸交于點(diǎn)A(x1,0)、B(x2,0),且x1<x2,與y軸的負(fù)半軸交于點(diǎn)C.
(1)當(dāng)b=1時(shí),求c的取值范圍;
(2)如果以AB為直徑的半圓恰好過點(diǎn)C,求c的值;
(3)在(2)的條件下,如果二次函數(shù)的對(duì)稱軸l與x軸、直線BC、直線AC的延長(zhǎng)線分別交于點(diǎn)D、E、F,且滿足DE=2EF,求二次函數(shù)的表達(dá)式.
【答案】(1)c<﹣1;(2)c的值為﹣2;(3)y= .
【解析】
(1)有兩個(gè)交點(diǎn)則△=0,從而可解;
(2)直徑所對(duì)的圓周角為直角,再利用斜邊中線等于斜邊一半可解;
(3)由平行得相似,從而列比例式可解.
(1)已知二次函數(shù)y=x2+bx+c+1的圖象與x軸交于點(diǎn)A(x1,0)、B(x2,0),當(dāng)b=1時(shí),
令x2+bx+c+1=0,則△=b2﹣4(c+1)=1﹣4c﹣4>0
∴,
考慮點(diǎn)C在負(fù)半軸,則c+1<0,
∴c<﹣1.
當(dāng)b=1時(shí),求c的取值范圍是c<﹣1.
(2)∵C(0,c+1),
令x2+bx+c+1=0,解得點(diǎn)A(,0),點(diǎn)B(,0),
如果以AB為直徑的半圓恰好過點(diǎn)C,則由直徑所對(duì)的圓周角為直角,得∠ACB=90°,二次函數(shù)的對(duì)稱軸l與x軸交于點(diǎn)D,則D(,0),
∴CD=,即,化簡(jiǎn)得c2+3c+2=0,
∴c=﹣2或c=﹣1(舍).
答:c的值為﹣2.
(3)設(shè)EF=k,DE=2K,
∵DE∥OC,
∴△DEB~△OCB,
∴,
∴,
∵OC∥DF,
∴△AOC~△ADF
∴,
∴,
∵AD=BD,
∴
又∵x1x2=﹣1,
∴,
∴
∴二次函數(shù)的表達(dá)式為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“優(yōu)秀傳統(tǒng)文化進(jìn)校園”活動(dòng)中,學(xué)校計(jì)劃每周二下午第三節(jié)課時(shí)間開展此項(xiàng)活動(dòng),擬開展活動(dòng)項(xiàng)目為:剪紙,武術(shù),書法,器樂,要求七年級(jí)學(xué)生人人參加,并且每人只能參加其中一項(xiàng)活動(dòng).教務(wù)處在該校七年級(jí)學(xué)生中隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查,并對(duì)此進(jìn)行統(tǒng)計(jì),繪制了如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(均不完整).
請(qǐng)解答下列問題:
(1)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;
(2)在參加“剪紙”活動(dòng)項(xiàng)目的學(xué)生中,男生所占的百分比是多少?
(3)若該校七年級(jí)學(xué)生共有500人,請(qǐng)估計(jì)其中參加“書法”項(xiàng)目活動(dòng)的有多少人?
(4)學(xué)校教務(wù)處要從這些被調(diào)查的女生中,隨機(jī)抽取一人了解具體情況,那么正好抽到參加“器樂”活動(dòng)項(xiàng)目的女生的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《如果想毀掉一個(gè)孩子,就給他一部手機(jī)!》這是2017年微信圈一篇熱傳的文章.國(guó)際上,法國(guó)教育部宣布從 2018 年9月新學(xué)期起小學(xué)和初中禁止學(xué)生使用手機(jī).為了解學(xué)生手機(jī)使用情況,某學(xué)校開展了“手機(jī)伴我健康行”主題活動(dòng),他們隨機(jī)抽取部分學(xué)生進(jìn)行“使用手機(jī)目的”和“每周使用手機(jī)的時(shí)間”的問卷調(diào)查,并繪制成如圖①,②的 統(tǒng)計(jì)圖,已知“查資料”的人數(shù)是 40人.請(qǐng)你根據(jù)以上信息解答下列問題:
(1)在扇形統(tǒng)計(jì)圖中,“玩游戲”對(duì)應(yīng)的百分比為______,圓心角度數(shù)是______度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該校共有學(xué)生2100人,估計(jì)每周使用手機(jī)時(shí)間在2 小時(shí)以上(不含2小時(shí))的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】爸爸想送小明一個(gè)書包和一輛自行車作為新年禮物,在甲、乙兩商場(chǎng)都發(fā)現(xiàn)同款的自行車單價(jià)相同,書包單價(jià)也相同,自行車和書包單價(jià)之和為452元,且自行車的單價(jià)比書包的單價(jià)4倍少8元.
(1)求自行車和書包單價(jià)各為多少元;
(2)新年來臨趕上商家促銷,乙商場(chǎng)所有商品打八五折(即8.5折)銷售,甲全場(chǎng)購(gòu)物毎滿100元返購(gòu)物券30元(即不足100元不返券,滿100元送30元購(gòu)物券,滿200元送60元購(gòu)物券),并可當(dāng)場(chǎng)用于購(gòu)物,購(gòu)物券全場(chǎng)通用.但爸爸只帶了400元錢,如果他只在同一家商場(chǎng)購(gòu)買看中的兩樣物品,在哪一家買更省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“高低杠”是女子體操特有的一個(gè)競(jìng)技項(xiàng)目,其比賽器材由高、低兩根平行杠及若干支架組成,運(yùn)動(dòng)員可根據(jù)自己的身高和習(xí)慣在規(guī)定范圍內(nèi)調(diào)節(jié)高、低兩杠間的距離.某興趣小組根據(jù)高低杠器材的一種截面圖編制了如下數(shù)學(xué)問題,請(qǐng)你解答.
如圖所示,底座上A,B兩點(diǎn)間的距離為90cm.低杠上點(diǎn)C到直線AB的距離CE的長(zhǎng)為155cm,高杠上點(diǎn)D到直線AB的距離DF的長(zhǎng)為234cm,已知低杠的支架AC與直線AB的夾角∠CAE為82.4°,高杠的支架BD與直線AB的夾角∠DBF為80.3°.求高、低杠間的水平距離CH的長(zhǎng).(結(jié)果精確到1cm,參考數(shù)據(jù)sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某高科技公司生產(chǎn)一種矩形新型材料板,其長(zhǎng)寬之比為 3∶2,每張材料板的成本 c與它的面積成正比例。每張材料板的銷售價(jià)格 y與其寬 x 之間滿足我們學(xué)習(xí)過的某種函數(shù)關(guān)系(即一次函數(shù)、反比例函數(shù)和二次函數(shù)關(guān)系中的一種),下表記錄了該工廠生產(chǎn)、銷售該材料板一些數(shù)據(jù):
(1)求一張材料板的銷售格 y 其寬 x 之間的函數(shù)關(guān)系式 (不必寫出自變的取值范圍)
(2)若一張材料板的利潤(rùn) w 為銷售價(jià)格 y與成本 c 的差
①請(qǐng)直接寫出一張材料板的利潤(rùn) w 其寬 x 之間的函數(shù)關(guān)系 (不必寫出自變的取值范圍)
②當(dāng)材料板的寬為多少時(shí),一張材料板的利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(﹣3,0),對(duì)稱軸為直線x=﹣1,給出以下結(jié)論:①abc<0 ②b2﹣4ac>0 ③4b+c<0 ④若B(﹣,y1)、C(﹣,y2)為函數(shù)圖象上的兩點(diǎn),則y1>y2⑤當(dāng)﹣3≤x≤1時(shí),y≥0,
其中正確的結(jié)論是(填寫代表正確結(jié)論的序號(hào))__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年4月22日是第50個(gè)世界地球日,某校在八年級(jí)5個(gè)班中,每班各選拔10名學(xué)生參加“環(huán)保知識(shí)競(jìng)賽”并評(píng)出了一、二、三等獎(jiǎng)各若干名,學(xué)校將獲獎(jiǎng)情況繪成如圖所示的不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中信息解答下列問題:
(1)求本次競(jìng)賽獲獎(jiǎng)的總?cè)藬?shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求扇形統(tǒng)計(jì)圖中“二等獎(jiǎng)”所對(duì)應(yīng)扇形的圓心角度數(shù);
(3)如果該校八年級(jí)有800人,請(qǐng)你估計(jì)獲獎(jiǎng)的同學(xué)共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AC=3,AB=4,D為斜邊BC的中點(diǎn),E為AB上一個(gè)動(dòng)點(diǎn),將△ABC沿直線DE折疊,A,C的對(duì)應(yīng)點(diǎn)分別為,,交BC于點(diǎn)F,若△BEF為直角三角形,則BE的長(zhǎng)度為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com