【題目】如圖,在RtABC中,∠C90°.點(diǎn)OAB的中點(diǎn),邊AC6,將邊長足夠大的三角板的直角頂點(diǎn)放在點(diǎn)O處,將三角板繞點(diǎn)0旋轉(zhuǎn),始終保持三角板的直角邊與AC相交,交點(diǎn)為點(diǎn)E,另?xiàng)l直角邊與BC相交,交點(diǎn)為D,則等腰直角三角板的直角邊被三角板覆蓋部分的兩條線段CDCE的長度之和為_____

【答案】6

【解析】

連接OC,證明△OCD≌△OBE,根據(jù)全等三角形的性質(zhì)得到CD=BE即可解決問題;

連接OC

ACBC,AOBO,ACB90°,

∴∠ACOBCOACB45°OCAB,AB45°

OCOB,

∵∠BOD+∠EOD+∠AOE180°,EOD90°,

∴∠BOD+∠AOE90°

∵∠COE+∠AOE90°,

∴∠BODCOE

OCEOBD中,

,

∴△OCE≌△OBDASA),

CEBD,

CE+CDBD+CDBCAC6

故答案為:6

點(diǎn)睛】本題考查旋轉(zhuǎn)變換、等腰直角三角形的性質(zhì)、全等三角形的判定和性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8分)如圖,AC是O的直徑,OB是O的半徑,PA切O于點(diǎn)A,PB與AC的延長線交于點(diǎn)M,COB=APB.

(1)求證:PB是O的切線;

(2)當(dāng)OB=3,PA=6時(shí),求MB,MC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩隊(duì)參加了端午情,龍舟韻賽龍舟比賽,兩隊(duì)在比賽時(shí)的路程(米)與時(shí)間(秒)之間的函數(shù)圖象如圖所示,請你根據(jù)圖象判斷,下列說法正確的是( 。

A. 乙隊(duì)率先到達(dá)終點(diǎn)

B. 甲隊(duì)比乙隊(duì)多走了

C. 秒時(shí),兩隊(duì)所走路程相等

D. 從出發(fā)到秒的時(shí)間段內(nèi),乙隊(duì)的速度慢

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD外側(cè),作等邊三角形ADEAC,BE相交于點(diǎn)F,則∠BFC為( 。

A. 75°B. 60°C. 55°D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知RtOAB,OAB=90°,ABO=30°,斜邊OB=4,將RtOAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)60°,如題圖1,連接BC.

(1)填空:∠OBC=   °;

(2)如圖1,連接AC,作OPAC,垂足為P,求OP的長度;

(3)如圖2,點(diǎn)M,N同時(shí)從點(diǎn)O出發(fā),在OCB邊上運(yùn)動,M沿O→C→B路徑勻速運(yùn)動,N沿O→B→C路徑勻速運(yùn)動,當(dāng)兩點(diǎn)相遇時(shí)運(yùn)動停止,已知點(diǎn)M的運(yùn)動速度為1.5單位/秒,點(diǎn)N的運(yùn)動速度為1單位/秒,設(shè)運(yùn)動時(shí)間為x秒,OMN的面積為y,求當(dāng)x為何值時(shí)y取得最大值?最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知A(﹣2,1),B(1,0),將線段AB繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BA′,則A′的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在ABCD中,延長DA到點(diǎn)E,延長BC到點(diǎn)F,使得AECF,連接EF,分別交AB,CD于點(diǎn)M,N,連接DM,BN.

1)求證:△AEM≌△CFN;

2)求證:四邊形BMDN是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題的逆命題為假命題的是( )

A.如果一元二次方程沒有實(shí)數(shù)根,那么

B.線段垂直平分線上任意一點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等.

C.如果兩個(gè)數(shù)相等,那么它們的平方相等.

D.直角三角形兩條直角邊的平方和等于斜邊的平方.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù) y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸是直線 x=1,下列結(jié)論:①ab<0;b2>4ac;a+b+2c<0;3a+c<0.其中正確的是_____

查看答案和解析>>

同步練習(xí)冊答案