已知點(diǎn)A(8,0)及在第一象限的動點(diǎn)P(x,y),且x+y=10,設(shè)△OPA的面積為S.
(1)求S關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)求S=12時P點(diǎn)坐標(biāo);
(3)在(2)的基礎(chǔ)上,設(shè)點(diǎn)Q為y軸上一動點(diǎn),當(dāng)PQ+AQ的值最小時,求Q點(diǎn)坐標(biāo).
分析:(1)首先把x+y=10,變形成y=10-x,再利用三角形的面積求法:底×高÷2=S,可以得到S關(guān)于x的函數(shù)表達(dá)式;P在第一象限,故x>0,再利用三角形的面積S>0,可得到x的取值范圍;
(2)把S=12代入函數(shù)解析式即可;
(3)根據(jù)題意畫出圖象,作出A的對稱點(diǎn)A′,連接PA′,此時PA′與y軸交于點(diǎn)Q,此時PQ+AQ的值最小,進(jìn)而求出即可.
解答:解:(1)∵x+y=10
∴y=10-x,
∴s=8(10-x)÷2=40-4x,
∵40-4x>0,
∴x<10,
∴0<x<10,

(2)∵s=12,
∴12=40-4x,
x=7
∴y=10-7=3,
∴s=12時,P點(diǎn)坐標(biāo)(7,3),

(3)畫出函數(shù)S的圖形如圖所示.
作出A的對稱點(diǎn)A′,連接PA′,此時PA′與y軸交于點(diǎn)Q,此時PQ+AQ的值最小,
∵A點(diǎn)坐標(biāo)為(8,0),
∴A′(-8,0),
∴將(-8,0),(7,3)代入y=kx+b,
0=-8k+b
3=7k+b

解得:
k=
1
5
b=
8
5
,
∴y=
1
5
x+
8
5
,
∴x=0時,y=
8
5
,
當(dāng)PQ+AQ的值最小時,Q點(diǎn)坐標(biāo)為:(0,
8
5
).
點(diǎn)評:此題主要考查了待定系數(shù)法求函數(shù)解析式以及畫一次函數(shù)的圖象和最短路線求法,解題時一定要注意自變量的取值范圍.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•廣西)已知點(diǎn)A(6,0)及在第一象限的動點(diǎn)P(x,y),且2x+y=8,設(shè)△OAP的面積為S.
(1)試用x表示y,并寫出x的取值范圍;
(2)求S關(guān)于x的函數(shù)解析式;
(3)△OAP的面積是否能夠達(dá)到30?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)A(6,0)及在第一象限的動點(diǎn)P(x,y),且2x+y=8,設(shè)△OAP的面積為S.
(1)試用x表示y,并寫出x的取值范圍;
(2)求S關(guān)于x的函數(shù)解析式;
(3)△OAP的面積是否能夠達(dá)到30?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(廣西來賓卷)數(shù)學(xué)(帶解析) 題型:解答題

已知點(diǎn)A(6,0)及在第一象限的動點(diǎn)P(x,y),且2x+y=8,設(shè)△OAP的面積為S.
(1)試用x表示y,并寫出x的取值范圍;
(2)求S關(guān)于x的函數(shù)解析式;
(3)△OAP的面積是否能夠達(dá)到30?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年廣西來賓市中考數(shù)學(xué)試卷(解析版) 題型:解答題

已知點(diǎn)A(6,0)及在第一象限的動點(diǎn)P(x,y),且2x+y=8,設(shè)△OAP的面積為S.
(1)試用x表示y,并寫出x的取值范圍;
(2)求S關(guān)于x的函數(shù)解析式;
(3)△OAP的面積是否能夠達(dá)到30?為什么?

查看答案和解析>>

同步練習(xí)冊答案