【題目】今年以來,國務(wù)院連續(xù)發(fā)布了《關(guān)于加快構(gòu)建大眾創(chuàng)業(yè)萬眾創(chuàng)新支撐平臺的指導(dǎo)意見》等一系列支持性政策,各地政府高度重視、積極響應(yīng),中國掀起了大眾創(chuàng)業(yè)萬眾創(chuàng)新的新浪潮.某創(chuàng)新公司生產(chǎn)營銷A、B兩種新產(chǎn)品,根據(jù)市場調(diào)研,發(fā)現(xiàn)如下信息:
信息1:銷售A種產(chǎn)品所獲利潤y(萬元)與所售產(chǎn)品x(噸)之間存在二次函數(shù)關(guān)系y=ax2+bx,當(dāng)x=1時,y=7;當(dāng)x=2時,y=12.
信息2:銷售B種產(chǎn)品所獲利潤y(萬元)與所售產(chǎn)品x(噸)之間存在正比例函數(shù)關(guān)系y=2x.
根據(jù)以上信息,解答下列問題:
(1)求a,b的值;
(2)該公司準(zhǔn)備生產(chǎn)營銷A、B兩種產(chǎn)品共10噸,請設(shè)計一個生產(chǎn)方案,使銷售A、B兩種產(chǎn)品獲得的利潤之和最大,最大利潤是多少?
【答案】解:(1)將x=1,y=7;x=2,y=12代入y=ax2+bx得:
,
解得:.
答:a=﹣1,b=8;
(2)設(shè)購進(jìn)A產(chǎn)品m噸,購進(jìn)B產(chǎn)品(10﹣m)噸,銷售A、B兩種產(chǎn)品獲得的利潤之和為W元,
則W=﹣m2+8m+2(10﹣m)=﹣m2+6m+20=﹣(m﹣3)2+29,
∵﹣1<0,
∴當(dāng)m=2時,W有最大值29萬,
∴購進(jìn)A產(chǎn)品3噸,購進(jìn)B產(chǎn)品7噸,銷售A、B兩種產(chǎn)品獲得的利潤之和最大,最大利潤是29萬元.
【解析】(1)把兩組數(shù)據(jù)代入二次函數(shù)解析式,然后利用待定系數(shù)法求解即可;
(2)設(shè)購進(jìn)A產(chǎn)品m噸,購進(jìn)B產(chǎn)品(10﹣m)噸,銷售A、B兩種產(chǎn)品獲得的利潤之和為W元,根據(jù)總利潤等于兩種產(chǎn)品的利潤的和列式整理得到W與m的函數(shù)關(guān)系式,再根據(jù)二次函數(shù)的最值問題解答.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,E是CD上的一點,△ABF是△ADE的旋轉(zhuǎn)圖形.
(1)寫成由△ADE順時針旋轉(zhuǎn)到△ABF的旋轉(zhuǎn)中心、旋轉(zhuǎn)角的度數(shù).
(2)連接EF,判斷并說明△AEF的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、BC上的點,且DE∥AC,若S△BDE:S△CDE=1:4,則S△BDE:S△ACD=( 。
A.1:16
B.1:18
C.1:20
D.1:24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某綠色無公害蔬菜基地有甲、乙兩種植戶,他們們種植了A、B兩類蔬菜,兩種植戶種植的兩類蔬菜的種植面積與總收入如下表:
種植戶 | 種植A類蔬菜面積(單位:畝) | 種植B類蔬菜面積(單位:畝) | 總收入(單位:元) |
甲 | 1 | 3 | 13500 |
乙 | 2 | 2 | 13000 |
說明:不同種植戶種植的同類蔬菜每畝平均收入相等
(1)求A、B兩類蔬菜每畝平均收入各是多少元?
(2)今年甲、乙兩種植戶聯(lián)合種植,計劃合租50畝地用來種植A、B兩類蔬菜,為了使總收入不低于16400元,問聯(lián)合種植最多可以種植A類蔬菜多少畝?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上有A,B,C,D四個點,且2AB=BC=3CD,若A,D兩點表示的數(shù)分別為-5,6,點E為BD的中點,則該數(shù)軸上點E表示的數(shù)是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c過原點O、點A (2,﹣4)、點B (3,﹣3),與x軸交于點C,直線AB交x軸于點D,交y軸于點E.
(1)求拋物線的函數(shù)表達(dá)式和頂點坐標(biāo);
(2)直線AF⊥x軸,垂足為點F,AF上取一點G,使△GBA∽△AOD,求此時點G的坐標(biāo);
(3)過直線AF左側(cè)的拋物線上點M作直線AB的垂線,垂足為點N,若∠BMN=∠OAF,求直線BM的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一寬為2cm的刻度尺在圓上移動,當(dāng)刻度尺的一邊與圓相切時,另一邊與圓兩個交點處的讀數(shù)恰好為“1”和“4”(單位:cm),則該圓的半徑為( 。
A.5cm
B.cm
C.cm
D.cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋中裝有2個紅球(記為紅球1、紅球2),1個白球、1個黑球,這些球除顏色外都相同,將球攪勻.
(1)從中任意摸出1個球,恰好摸到紅球的概率是多少;
(2)先從中任意摸出一個球,再從余下的3個球中任意摸出1個球,請用列舉法(畫樹狀圖或列表),求兩次都摸到紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點0為坐標(biāo)原點,拋物線y=ax2+bx+4與y軸交于點A,與x軸交于點B、C(點B在點C左側(cè)),且OA=OC=4OB.
(1)求a,b的值;
(2)連接AB、AC,點P是拋物線上第一象限內(nèi)一動點,且點P位于對稱軸右側(cè),
過點P作PD⊥AC于點E,分別交x、y軸于點D、H,過點P作PG∥AB交AC于點F,交x軸于點G,設(shè)P(x,y),線段DG的長為d,求d與x之間的函數(shù)關(guān)系(不要求寫出自變量x的取值范圍);
(3)在(2)的條件下,當(dāng)時,連接AP并延長至點M,連接HM交AC于點S,點R是拋物線上一動點,當(dāng)△ARS為等腰直角三角形時.求點R的坐標(biāo)和線段AM的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com