【題目】如圖,四邊形ABCD是平行四邊形,E,F(xiàn)是對角線BD上的兩點,且BF=ED,求證:AE∥CF.

【答案】證明:連接AC,交BD于點O,如圖所示:
∵四邊形ABCD是平行四邊形,
∴OA=OC,OB=OD,
∵BF=ED,
∴OE=OF,
∵OA=OC,
∴四邊形AECF是平行四邊形,
∴AE∥CF.
【解析】連接AC,交BD于點O,由“平行四邊形ABCD的對角線互相平分”得到OA=OC,OB=OD;然后結(jié)合已知條件證得OE=OF,則“對角線互相平分的四邊形是平行四邊形”,即可得出結(jié)論.
【考點精析】利用平行四邊形的性質(zhì)對題目進行判斷即可得到答案,需要熟知平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點M是BC邊上的任一點,連接AM并將線段AM繞M順時針旋轉(zhuǎn)90°得到線段MN,在CD邊上取點P使CP=BM,連接NP,BP.
(1)求證:四邊形BMNP是平行四邊形;
(2)線段MN與CD交于點Q,連接AQ,若△MCQ∽△AMQ,則BM與MC存在怎樣的數(shù)量關(guān)系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的布袋里裝有4個標有1,2,3,4的小球,它們的形狀、大小、質(zhì)地完全相同,小李從布袋里隨機取出一個小球,記下數(shù)字為x,小張在剩下的3個小球中隨機取出一個小球,記下數(shù)字為y,這樣確定了點Q的坐標(x,y).
(1)畫樹狀圖或列表,寫出點Q所有可能的坐標;
(2)求點Q(x,y)在函數(shù)y=﹣x+5圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設(shè)△ABC的一邊長為x,這條邊上的高為y,y與x滿足的反比例函數(shù)關(guān)系如圖所示.當△ABC為等腰直角三角形時,x+y的值為(
A.4
B.5
C.5或3
D.4或3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若兩個二次函數(shù)圖象的頂點相同,開口大小相同,但開口方向相反,則稱這兩個二次函數(shù)為“對稱二次函數(shù)”.
(1)請寫出二次函數(shù)y=2(x﹣2)2+1的“對稱二次函數(shù)”;
(2)已知關(guān)于x的二次函數(shù)y1=x2﹣3x+1和y2=ax2+bx+c,若y1﹣y2與y1互為“對稱二次函數(shù)”,求函數(shù)y2的表達式,并求出當﹣3≤x≤3時,y2的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)與直線y=x+1相交于A(﹣1,0),B(4,m)兩點,且拋物線經(jīng)過點C(5,0).

(1)求拋物線的解析式;
(2)點P是拋物線上的一個動點(不與點A、點B重合),過點P作直線PD⊥x軸于點D,交直線AB于點E.
①當PE=2ED時,求P點坐標;
②是否存在點P使△BEC為等腰三角形?若存在請直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將八個邊長為1的小正方形擺放在平面直角坐標系中,若過原點的直線l將圖形分成面積相等的兩部分,則將直線l向右平移3個單位后所得直線l′的函數(shù)關(guān)系式為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC中,設(shè)∠A、∠B、∠C的對邊分別為a,b,c,過點A作AD⊥BC,垂足為D,會有sin∠C= ,則
SABC= BC×AD= ×BC×ACsin∠C= absin∠C,
即SABC= absin∠C
同理SABC= bcsin∠A
SABC= acsin∠B
通過推理還可以得到另一個表達三角形邊角關(guān)系的定理﹣余弦定理:
如圖2,在△ABC中,若∠A、∠B、∠C的對邊分別為a,b,c,則
a2=b2+c2﹣2bccos∠A
b2=a2+c2﹣2accos∠B
c2=a2+b2﹣2abcos∠C

用上面的三角形面積公式和余弦定理解決問題:
(1)如圖3,在△DEF中,∠F=60°,∠D、∠E的對邊分別是3和8.求SDEF和DE2

解:SDEF= EF×DFsin∠F=;
DE2=EF2+DF2﹣2EF×DFcos∠F=
(2)如圖4,在△ABC中,已知AC>BC,∠C=60°,△ABC'、△BCA'、△ACB'分別是以AB、BC、AC為邊長的等邊三角形,設(shè)△ABC、△ABC'、△BCA'、△ACB'的面積分別為S1、S2、S3、S4 , 求證:S1+S2=S3+S4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,直線MN交⊙O于A,B兩點,AC是直徑,AD平分∠CAM交⊙O于D,過D作DE⊥MN于E.
(1)求證:DE是⊙O的切線;
(2)若DE=6cm,AE=3cm,求⊙O的半徑.
(3)在(2)的條件下,直接寫出tan∠CAB的值.

查看答案和解析>>

同步練習冊答案