【題目】如圖,平行四邊形的頂點、軸上,頂點軸上,已知,

1)平行四邊形的面積為________;

2)如圖1,點邊上的一點,若的面積是平行四邊形,求點的坐標;

3)如圖2,將繞點順時針旋轉(zhuǎn),旋轉(zhuǎn)得,在整個旋轉(zhuǎn)過程中,能否使以點、、為頂點的四邊形是平行四邊形?若能,求點的坐標;若不能,請說明理由.

【答案】132;(2)點E的坐標為(2);(3)能,點A1的坐標為

【解析】

1)由題意可得AB=8,根據(jù)平行四邊形的面積公式可求得ABCD的面積;
2)過點EEFAB,根據(jù)△ABE的面積是ABCD,可求EF的長,根據(jù)B點,C點坐標可求直線BC的解析式,把點E的縱坐標代入可求點E的坐標;
3)分以下三種情況討論:①四邊形OA1D1B是平行四邊形,②四邊形A1D1OB是平行四邊形,③四邊形OA1BD1是平行四邊形,過點A1A1EBA于點E.先分別畫出示意圖,利用旋轉(zhuǎn)的性質(zhì),平行四邊形的性質(zhì)再結(jié)合面積法及勾股定理可分別得出點A1的坐標.

解:(1)∵OA=3OB=5,OD=4
AB=8,∴ABCD的面積=4×8=32,
故答案為:32;
2)過點EEFABF

SABE=SABCD,∴×AB×EF=×32,∴EF=2
OB=5,CD=AB=8,OD=4,
∴點B5,0),點C8,4),
設(shè)直線BC的解析式為y=kx+b,

,解得,

∴直線BC的解析式為y=

y=2時,x=,
∴點E的坐標為(2);
3)能使以點、、、為頂點的四邊形是平行四邊形,理由如下:

OA=3,OD=4,∴AD=5,分以下三種情況:

①如圖,若四邊形OA1D1B是平行四邊形,A1D1y軸于點F,

∵將△AOD繞點O順時針旋轉(zhuǎn),旋轉(zhuǎn)得△A1OD1
A1O=AO=3,OD1=OD=4,∠A1OD1=AOD=90°.
∵四邊形OA1D1B是平行四邊形,

A1D1=BO=5,A1D1AB,∴∠A1FO=180°-AOD=90°,
SA1OD1=×A1O×OD1=×A1D1×OF,

OF=,

∵點A1在第二象限,∴A1的坐標為;

②如圖,若四邊形A1D1OB是平行四邊形,A1D1y軸于點F,

同①可得,,

∵點A1在第四象限,∴A1的坐標為;

③如圖,若四邊形OA1BD1是平行四邊形,過點A1A1EBA于點E,

OA1BD1是平行四邊形,且∠A1OD1=90°,
∴四邊形OA1BD1是矩形,∴OD1=A1B=4,∠OA1B=90°,
SA1OB=×OB×A1E=×A1O×A1B,
A1E=,∴OE=,

A1的坐標為

綜上所述,符合條件的點A1的坐標為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC三個頂點的坐標分別為:A1,﹣4),B5,﹣4),C4,﹣1).

1)將△ABC經(jīng)過平移得到△A1B1C1,若點C的應(yīng)點C1的坐標為(2,5),則點AB的對應(yīng)點A1,B1的坐標分別為   

2)在如圖的坐標系中畫出△A1B1C1,并畫出與△A1B1C1關(guān)于原點O成中心對稱的△A2B2C2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC,BD相交于點O,且DEAC,AEBD

1)求證:四邊形AODE是矩形.

2)若AB=5,BD=8,求矩形AODE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,三角形ABC三個頂點的坐標分別為、,,若把三角形ABC向上平移3個單位長度,再向左平移1個單位長度得到三角形A′B′C′,點AB、C的對應(yīng)點分別為A′、B′、C′。

1)寫出點A′、B′、C′的坐標;

2)在圖中畫出平移后的三角形A′B′C′;

3)三角形A′B′C′的面積為_____________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖像與反比例函數(shù)在第一象限內(nèi)的圖像交于兩點.

1)求反比例函數(shù)的表達式;

2)在第一象限內(nèi),當一次函數(shù)的值大于反比例函數(shù)的值時,寫出自變量的取值范圍;

3)求面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點EF分別在矩形ABCD的邊AD、AB上,連接EF,四邊形ABFE沿EF翻折能與四邊形重合,且ED相交,若,則  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題.

程大位明代商人,珠算發(fā)明家被稱為珠算之父、卷尺之父.少年時,讀書極為廣博,對數(shù)學(xué)頗感興趣60歲時完成其杰作《直指算法統(tǒng)宗》簡稱《算法統(tǒng)宗》).

在《算法統(tǒng)宗》里記載了一道趣題一百饅頭一百僧,大僧三個更無爭,小僧三人分一個大小和尚各幾丁?意思是100個和尚分100個饅頭,如果大和尚1人分3小和尚3人分1,正好分完.試問大、小和尚各多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個三位正整數(shù)M,其各位數(shù)字均不為零且互不相等.若將M的十位數(shù)字與百位數(shù)字交換位置,得到一個新的三位數(shù)我們稱這個三位數(shù)為M友誼數(shù),168友誼數(shù)“618”;若從M的百位數(shù)字、十位數(shù)字、個位數(shù)字中任選兩個組成一個新的兩位數(shù),并將得到的所有兩位數(shù)求和,我們稱這個和為M團結(jié)數(shù),123團結(jié)數(shù)12+13+21+23+31+32=132

1求證M與其友誼數(shù)的差能被15整除;

2若一個三位正整數(shù)N其百位數(shù)字為2,十位數(shù)字為a、個位數(shù)字為b,且各位數(shù)字互不相等(a≠0,b≠0),N團結(jié)數(shù)N之差為24N的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將線段AB繞點O順時針旋轉(zhuǎn)90°得到線段A′B′,那么A(﹣2,5)的對應(yīng)點A′的坐標是________

查看答案和解析>>

同步練習(xí)冊答案