【題目】如圖,AB是⊙O的直徑,C,P是 上兩點(diǎn),AB=13,AC=5.
(1)如圖(1),若點(diǎn)P是 的中點(diǎn),求PA的長(zhǎng);
(2)如圖(2),若點(diǎn)P是 的中點(diǎn),求PA的長(zhǎng).

【答案】
(1)解:如圖(1)所示,連接PB,

∵AB是⊙O的直徑且P是 的中點(diǎn),

∴∠PAB=∠PBA=45°,∠APB=90°,

又∵在等腰三角形△APB中有AB=13,

∴PA= = =


(2)解:如圖(2)所示:連接BC.OP相交于M點(diǎn),作PN⊥AB于點(diǎn)N,

∵P點(diǎn)為弧BC的中點(diǎn),

∴OP⊥BC,∠OMB=90°,

又因?yàn)锳B為直徑

∴∠ACB=90°,

∴∠ACB=∠OMB,

∴OP∥AC,

∴∠CAB=∠POB,

又因?yàn)椤螦CB=∠ONP=90°,

∴△ACB∽△0NP

= ,

又∵AB=13 AC=5 OP= ,

代入得 ON=

∴AN=OA+ON=9

∴在Rt△OPN中,有NP2=0P2﹣ON2=36

在Rt△ANP中 有PA= = =3

∴PA=3


【解析】(1)根據(jù)圓周角的定理,∠APB=90°,P是弧AB的中點(diǎn),所以三角形APB是等腰三角形,利用勾股定理即可求得.(2)根據(jù)垂徑定理得出OP垂直平分BC,得出OP∥AC,從而得出△ACB∽△0NP,根據(jù)對(duì)應(yīng)邊成比例求得ON、AN的長(zhǎng),利用勾股定理求得NP的長(zhǎng),進(jìn)而求得PA.
【考點(diǎn)精析】本題主要考查了等腰直角三角形和勾股定理的概念的相關(guān)知識(shí)點(diǎn),需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

同步練習(xí)冊(cè)答案