【題目】如圖,AB是⊙O的直徑,C,P是 上兩點(diǎn),AB=13,AC=5.
(1)如圖(1),若點(diǎn)P是 的中點(diǎn),求PA的長(zhǎng);
(2)如圖(2),若點(diǎn)P是 的中點(diǎn),求PA的長(zhǎng).
【答案】
(1)解:如圖(1)所示,連接PB,
∵AB是⊙O的直徑且P是 的中點(diǎn),
∴∠PAB=∠PBA=45°,∠APB=90°,
又∵在等腰三角形△APB中有AB=13,
∴PA= = =
(2)解:如圖(2)所示:連接BC.OP相交于M點(diǎn),作PN⊥AB于點(diǎn)N,
∵P點(diǎn)為弧BC的中點(diǎn),
∴OP⊥BC,∠OMB=90°,
又因?yàn)锳B為直徑
∴∠ACB=90°,
∴∠ACB=∠OMB,
∴OP∥AC,
∴∠CAB=∠POB,
又因?yàn)椤螦CB=∠ONP=90°,
∴△ACB∽△0NP
∴ = ,
又∵AB=13 AC=5 OP= ,
代入得 ON= ,
∴AN=OA+ON=9
∴在Rt△OPN中,有NP2=0P2﹣ON2=36
在Rt△ANP中 有PA= = =3
∴PA=3
【解析】(1)根據(jù)圓周角的定理,∠APB=90°,P是弧AB的中點(diǎn),所以三角形APB是等腰三角形,利用勾股定理即可求得.(2)根據(jù)垂徑定理得出OP垂直平分BC,得出OP∥AC,從而得出△ACB∽△0NP,根據(jù)對(duì)應(yīng)邊成比例求得ON、AN的長(zhǎng),利用勾股定理求得NP的長(zhǎng),進(jìn)而求得PA.
【考點(diǎn)精析】本題主要考查了等腰直角三角形和勾股定理的概念的相關(guān)知識(shí)點(diǎn),需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com