如圖,方格圖案中的正方形頂點(diǎn)叫做格點(diǎn),圖1中以格點(diǎn)為頂點(diǎn)的等腰直角三角形有4個(gè),圖2中以格點(diǎn)為頂點(diǎn)的等腰直角三角形有10個(gè),圖3中以格點(diǎn)為頂點(diǎn)的等腰直角三角形的個(gè)數(shù)為


  1. A.
    16個(gè)
  2. B.
    20個(gè)
  3. C.
    24個(gè)
  4. D.
    28個(gè)
D
分析:根據(jù)等腰直角三角形的性質(zhì),分單個(gè)小正方形,兩個(gè)小正方形組合的矩形,四個(gè)小正方形組合的大正方形,可以確定的等腰直角三角形的個(gè)數(shù),然后相加即可得解.
解答:解:圖3中,每一個(gè)小正方形可以有4個(gè)等腰直角三角形,共有4×4=16個(gè),
兩個(gè)小正方形組合的矩形可以有2×4=8個(gè)等腰直角三角形,
四個(gè)小正方形可以組合成一個(gè)大正方形,可以有4個(gè)等腰直角三角形,
所以,等腰三角形共有16+8+4=28.
故選D.
點(diǎn)評(píng):本題考查了等腰直角三角形,要注意從單個(gè)小正方形可得到的等腰直角三角形和組合圖形可得到等腰直角三角形兩個(gè)方面考慮.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

我們常用各種多邊形地磚鋪砌成美麗的圖案,也就是說(shuō),使用給定的某些多邊形,能夠拼成一個(gè)平面圖形,既不留下一絲空白,又不互相重疊(在幾何里稱為平面密鋪).當(dāng)圍繞一點(diǎn)拼在一起的幾個(gè)多邊形的內(nèi)角和為360°時(shí),就能夠拼成一個(gè)平面圖形.
探究用同一種正多邊形進(jìn)行平面密鋪.
例如:如圖1,用三個(gè)同種類型(大小一樣、形狀相同)的正六邊形地磚可以平面密鋪.
(1)請(qǐng)問(wèn)僅限于同一種類型的多邊形進(jìn)行密鋪,哪幾種能平面密鋪?
①②
①②
(填序號(hào));
①正三角形    ②正四邊形     ③正五邊形     ④正八邊形
探究用兩種邊長(zhǎng)相等的正多邊形進(jìn)行平面密鋪.
例如:如圖2,二個(gè)正三角形和二個(gè)正六邊形可以平面密鋪.
(2)限用兩種邊長(zhǎng)相等的正多邊形進(jìn)行平面密鋪,以下哪幾種是可行的?
ABE
ABE

A.正三角形和正方形      B.正方形和正八邊形         C.正方形和正五邊形
D.正八邊形和正六邊形    E.正三角形和正十二邊形    F.正三角形和正五邊形
(3)繼續(xù)推廣到用三種不同的正多邊形進(jìn)行平面密鋪,請(qǐng)寫(xiě)出符合題意的不同組合.
例如:①正三角形、正方形、正六邊形;
②正三角形、正九邊形、正十八邊形;
正三角形、正四邊形,正十二邊形
正三角形、正四邊形,正十二邊形

正三角形,正十邊形,正十五邊形
正三角形,正十邊形,正十五邊形

(4)如果用形狀,大小相同的如圖3方格紙中的三角形,能進(jìn)行平面密鋪嗎?若能,請(qǐng)?jiān)诜礁窦堉挟?huà)出密鋪的設(shè)計(jì)圖.

查看答案和解析>>

同步練習(xí)冊(cè)答案