已知二次函數(shù)y=ax2+bx+c與一次函數(shù)y=mx+n的圖象交點為(-1,2),(2,5),且二次函數(shù)的最小值為1,則這個二次函數(shù)的解析式為
 
分析:根據(jù)題意設(shè)二次函數(shù)的解析式為:y=a(x-k)2+1,然后把(-1,2),(2,5)代入解析式得,得到2=a•(-1-k)2+1①,
5=a•(2-k)2+1②,解由①②組成的方程組得,k=0,a=1或k=-4,a=
1
9
即得到二次函數(shù)的解析式.
解答:解:設(shè)二次函數(shù)的解析式為:y=a(x-k)2+1,
把(-1,2),(2,5)代入解析式得,
2=a•(-1-k)2+1①,
5=a•(2-k)2+1②,
解由①②組成的方程組得,k=0,a=1或k=-4,a=
1
9

∴二次函數(shù)的解析式為y=x2+1或y=
1
9
(x+4)2+1=
1
9
x2+
8
9
x+
25
9

故答案為:y=x2+1或y=
1
9
x2+
8
9
x+
25
9
點評:本題考查了二次函數(shù)的頂點式:y=a(x-k)2+h,其中a≠0,頂點坐標(biāo)為(k,h).也考查了點在圖象上則點的橫縱坐標(biāo)滿足函數(shù)的解析式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、已知二次函數(shù)y=a(x+1)2+c的圖象如圖所示,則函數(shù)y=ax+c的圖象只可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)y=ax+bx+c的圖象與x軸交于點A.B,與y軸交于點 C.

(1)寫出A. B.C三點的坐標(biāo);(2)求出二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省廣州市海珠區(qū)九年級上學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:選擇題

已知二次函數(shù)y=ax²+bx+c(a≠0)的圖像如圖所示,則下列結(jié)論中正確的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一個根

C.a+b+c=0          D.當(dāng)x<1時,y隨x的增大而減小

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

已知二次函數(shù)y=ax+bx+c(a≠0,a,b,c為常數(shù)),對稱軸為直線x=1,它的部分自變量與函數(shù)值y的對應(yīng)值如下表,寫出方程ax2+bx+c=0的一個正數(shù)解的近似值________(精確到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=ax²+bx+c(c≠0)的圖像如圖4所示,下列說法錯誤的是:

(A)圖像關(guān)于直線x=1對稱

(B)函數(shù)y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的兩個根

(D)當(dāng)x<1時,y隨x的增大而增大

查看答案和解析>>

同步練習(xí)冊答案