【題目】如圖,的半徑為于點D,點C上一動點,以BC為邊向下作等邊

當點C運動到時,

求證:BC相切;

試判斷點A是否在上,并說明理由.

設(shè)的面積為S,求S的取值范圍.

【答案】(1)詳見解析;②是,詳見解析(2)

【解析】

1)①連接CD,根據(jù)等邊三角形性質(zhì),得OB邊的中線且,故

為直角三角形,;②連接OA,證,,故點A上;

(2)當點C與點D重合時,面積最小, ;當點C運動至AO的延長線時,的面積最大,,可得S取值范圍.

證明:連接CD,

為等邊三角形,

,

,

OB邊的中線且,

為直角三角形,,

,

相切;

解:點A上;

連接OA

,

為等邊三角形,

,

,

中,

,

,

A上;

解:當點C與點D重合時,面積最小,

當點C運動至AO的延長線時,的面積最大,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l的表達式為y=x,點A1的坐標為(1,0),以O(shè)為圓心,OA1為半徑畫弧,與直線l交于點C1,記長為m1;過點A1作A1B1垂直x軸,交直線l于點B1,以O(shè)為圓心,OB1為半徑畫弧,交x軸于C2,記的長為m2;過點B1作A2B1垂直l,交x軸于點A2,以O(shè)為圓心,OA2為半徑畫弧,交直線l于C3,記的長為m3…按照這樣規(guī)律進行下去,mn的長為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+mx+n與直線y=x+3交于A,B兩點,交x軸與D,C兩點,連接AC,BC,已知A0,3),C3,0).

)求拋物線的解析式和tan∠BAC的值;

)在()條件下:

1Py軸右側(cè)拋物線上一動點,連接PA,過點PPQ⊥PAy軸于點Q,問:是否存在點P使得以A,P,Q為頂點的三角形與△ACB相似?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.

2)設(shè)E為線段AC上一點(不含端點),連接DE,一動點M從點D出發(fā),沿線段DE以每秒一個單位速度運動到E點,再沿線段EA以每秒個單位的速度運動到A后停止,當點E的坐標是多少時,點M在整個運動中用時最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】水壩的橫截面是梯形ABCD,現(xiàn)測得壩頂DC=4 m,坡面AD的坡度i1:1,坡面BC的坡角β60°,壩高3m,()求:

(1)壩底AB的長(精確到01)

(2)水利部門為了加固水壩,在保持壩頂CD不變的情況下降低AD的坡度(如圖),使新坡面DE的坡度i,原水壩底部正前方2.5m處有一千年古樹,此加固工程對古樹是否有影響?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標系中,已知點A8,0)和點B06),點CAB的中點,點P在折線AOB上,直線CP截△AOB,所得的三角形與△AOB相似,那么點P的坐標是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2-2x+m=0,有兩個不相等的實數(shù)根.

⑴求實數(shù)m的最大整數(shù)值;

⑵在⑴的條下,方程的實數(shù)根是x1,x2,求代數(shù)式x12+x22-x1x2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+2x+3,截取該函數(shù)圖象在0≤x≤4間的部分記為圖象G,設(shè)經(jīng)過點(0,t)且平行于x軸的直線為l,將圖象G在直線l下方的部分沿直線l翻折,圖象G在直線上方的部分不變,得到一個新函數(shù)的圖象M,若函數(shù)M的最大值與最小值的差不大于5,則t的取值范圍是( 。

A.1≤t≤0B.1≤tC.D.t1t≥0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,正比例函數(shù)yx的圖像與反比例函數(shù)y的圖像交于A,B兩點,且點A的坐標為(6,a).

1)求反比例函數(shù)的表達式;

2)已知點Cb,4)在反比例函數(shù)y的圖像上,點Px軸上,若△AOC的面積等于△AOP的面積的兩倍,請求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在ABC中,∠ABC90°

1)如圖1,分別過A、C兩點作經(jīng)過點B的直線MN的垂線,垂足分別為M、N

①求證:AMB∽△BNC;

②若AMB∽△ABC,求證:ACAM+CN

2)如圖2,點DCA延長線上的一點,DEEBAEAB,ADBCCA335,求的值.

查看答案和解析>>

同步練習(xí)冊答案