如圖,點(diǎn)A1,A2,A3,A4在射線OA上,點(diǎn)B1,B2,B3在射線OB上,且A1B1∥A2B2∥A3B3,A2B1∥A3B2∥A4B3.若△A2B1B2,△A3B2B3的面積分別為1,4,則圖中三個(gè)陰影三角形面積之和為   
【答案】分析:已知△A2B1B2,△A3B2B3的面積分別為1,4,且兩三角形相似,因此可得出A2B2:A3B3=1:2,由于△A2B2A3與△B2A3B3是等高不等底的三角形,所以面積之比即為底邊之比,因此這兩個(gè)三角形的面積比為1:2,根據(jù)△A3B2B3的面積為4,可求出△A2B2A3的面積,同理可求出△A3B3A4和△A1B1A2的面積.即可求出陰影部分的面積.
解答:解:△A2B1B2,△A3B2B3的面積分別為1,4,
又∵A2B2∥A3B3,A2B1∥A3B2,
∴∠OB2A2=∠OB3A3,∠A2B1B2=∠A3B2B3,
∴△B1B2A2∽△B2B3A3,
=

=(2=,△A3B2B3的面積是4,
∴△A2B2A3的面積為=×S△A3B2B3=×4=2(等高的三角形的面積的比等于底邊的比).
同理可得:△A3B3A4的面積=2×S△A3B2B3=2×4=8;
△A1B1A2的面積=S△A2B1B2=×1=0.5.
∴三個(gè)陰影面積之和=0.5+2+8=10.5.
故答案為:10.5.
點(diǎn)評(píng):本題的關(guān)鍵是利用平行線證明三角形相似,再根據(jù)已給的面積,求出相似比,從而求陰影部分的面積.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)A1,A2,A3,A4在射線OA上,點(diǎn)B1,B2,B3在射線OB上,且A1B1∥A2B2∥A3B3,A2B1∥A3B2∥A4B3.若△A2B1B2,△A3B2B3的面積分別為1,4,則圖中三個(gè)陰影三角形面積之和為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)A1、A2,B1、B2,C1、C2分別是△ABC的邊BC、CA、AB的三等分點(diǎn),若△ABC的周長(zhǎng)為L(zhǎng),則六邊形A1A2B1B2C1C2的周長(zhǎng)為( 。
A、
1
3
L
B、3L
C、2L
D、
2
3
L

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)A1、A2、A3、…、An在拋物線y=x2圖象點(diǎn)B1、B2、B3、…、Bn在y軸上,若△A1B0B1、△A2B1B2、…、△AnBn-1Bn都為等腰直角三角形(點(diǎn)B0是坐標(biāo)原點(diǎn)),則△A2012B2011B2012的腰長(zhǎng)=
2012
2
2012
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)A1、A2、A3、…、An在拋物線y=x2圖象上,點(diǎn)B1、B2、B3、…、Bn在y軸上,若△A1B0B1、△A2B1B2、…、△AnBn-1Bn都為等腰直角三角形(點(diǎn)B0是坐標(biāo)原點(diǎn)),則△A2013B2012B2013的腰長(zhǎng)=
2013
2
2013
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南京二模)如圖,點(diǎn)A1、A2、A3、A4、A5在⊙O上,且
A1A2
=
A2A3
=
A3A4
=
A4A5
=
A5A1
,B、C分別是A1A2、A2A3上兩點(diǎn),A1B=A2C,A5B與A1C相交于點(diǎn)D,則∠A5DC的度數(shù)為
108°
108°

查看答案和解析>>

同步練習(xí)冊(cè)答案