【題目】如圖,已知點O在直線AB上,作射線OC,點D在平面內(nèi),∠BOD與∠AOC互余.

(1)若∠AOC:BOD=4:5,則∠BOD= ;

(2)若∠AOC=α(0°<α≤45°),ON平分∠COD

①當(dāng)點D在∠BOC內(nèi),補全圖形,直接寫出∠AON的值(用含α的式子表示);

②若∠AON與∠COD互補,求出α的值.

【答案】(1);(2)①;②的取值為.

【解析】

(1)根據(jù)互余兩角的和等于90°求解即可;

(2)①畫出圖形,結(jié)合圖形求解即可;②分點內(nèi)和點D和點外兩種情況求解即可.

解:(1)

(2)①補全圖形如下:

,

②情形一:點內(nèi).

此時,,依題意可得:

解得:.

情形二:點外.

在0°45°的條件下,補全圖形如下:

此時,,

,依題意可得:

,

解得:.

綜上,的取值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量(萬件)與銷售單價(元)之間的關(guān)系可以近似地看作一次函數(shù).(利潤=售價-制造成本)

(1)寫出每月的利潤(萬元)與銷售單價(元)之間的函數(shù)關(guān)系式;

(2)當(dāng)銷售單價為多少元時,廠商每月獲得的利潤為440萬元?

(3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售單價不能高于40元,如果廠商每月的制造成本不超過540萬元,那么當(dāng)銷售單價為多少元時,廠商每月獲得的利潤最大?最大利潤為多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是圓上一點,弦CDAB于點E,且DC=AD過點A作⊙O的切線,過點CDA的平行線,兩直線交于點F,FC的延長線交AB的延長線于點G.

(1)求證:FG與⊙O相切;

(2)連接EF,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某區(qū)環(huán)保部門為了提高宣傳垃圾分類的實效,抽樣調(diào)查了部分居民小.區(qū)一段時間內(nèi)生活垃圾的分類情況,如圖,進行整理后,繪制了如下兩幅不完整的統(tǒng)計圖;根據(jù)統(tǒng)計圖解答下列問題:

1)求抽樣調(diào)查的生活垃圾的總噸數(shù);

2)將條形統(tǒng)計圖補充完整;

3)調(diào)查發(fā)現(xiàn),在可回收物中廢紙垃圾約占,每回收噸廢紙可再造噸的再生紙,假設(shè)該城市每月生產(chǎn)的生活垃圾為噸,且全部分類處理,那么每月回收的廢紙可制成再生紙多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為做好防汛工作,防汛指揮部決定對某水庫的水壩進行加高加固,專家提供的方案是:水壩加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如圖所示,已知AE=4米,∠EAC=130°,求水壩原來的高度BC.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位招聘員工,采取筆試與面試相結(jié)合的方式進行,兩項成績的原始分均為.名選手的得分如下:根據(jù)規(guī)定,筆試成績和面試成績分別按一定的百分比折合成綜合成績(綜合成績的滿分仍為分),現(xiàn)得知號選手的綜合成績?yōu)?/span>.

序號

筆試成績/

面試成績/

1)求筆試成績和面試成績各占的百分比:

2)求出其余兩名選手的綜合成績,并以綜合成績排序確定這三名選手的名次。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)店銷售單價分別為/筒、/筒的甲、乙兩種羽毛球.根據(jù)消費者需求,該網(wǎng)店決定用不超過元購進甲、乙兩種羽毛球共.且甲種羽毛球的數(shù)量大于乙種羽毛球數(shù)量的.已知甲、乙兩種羽毛球的進價分別為/筒、/筒。若設(shè)購進甲種羽毛球.

1)該網(wǎng)店共有幾種進貨方案?

2)若所購進羽毛球均可全部售出,求該網(wǎng)店所獲利潤(元)與甲種羽毛球進貨量(簡)之間的函數(shù)關(guān)系式,并求利潤的最大值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校準(zhǔn)備從甲乙兩位選手中選擇一位選手代表學(xué)校參加所在地區(qū)的漢字聽寫大賽,學(xué)校對兩位選手從表達能力、閱讀理解、綜合素質(zhì)和漢字聽寫四個方面做了測試,他們各自的成績(百分制)如表:

選手

表達能力

閱讀理解

綜合素質(zhì)

漢字聽寫


85

78

85

73


73

80

82

83

1)由表中成績已算得甲的平均成績?yōu)?/span>80.25,請計算乙的平均成績,從他們的這一成績看,應(yīng)選派誰;

2)如果表達能力、閱讀理解、綜合素質(zhì)和漢字聽寫分別賦予它們2、1、34的權(quán),請分別計算兩名選手的平均成績,從他們的這一成績看,應(yīng)選派誰.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20104月,國務(wù)院出臺房貸新政,確定實行更為嚴(yán)格的差別化住房信貸政策,對樓市產(chǎn)生了較大的影響.下面是某市今年2月~5月商品住宅的月成交量統(tǒng)計圖(不完整),請根據(jù)圖中提供的信息,完成下列問題:

1)該市今年2月~5月共成交商品住宅______套;

(2)請你補全條形統(tǒng)計圖;

(3)該市這4個月商品住宅的月成交量的極差是____套,中位數(shù)是_______套.

查看答案和解析>>

同步練習(xí)冊答案