【題目】國(guó)家為了推進(jìn)教育均衡發(fā)展,在鄉(xiāng)鎮(zhèn)中心學(xué)校開設(shè)的體育選修課有A﹣籃球,B﹣?zhàn)闱颍?/span>C﹣排球,D﹣羽毛球,E﹣乒乓球,學(xué)生可根據(jù)自己的愛好選修一門,學(xué)校張老師對(duì)某班全班同學(xué)的選課情況進(jìn)行調(diào)查統(tǒng)計(jì),制成了兩幅不完整的統(tǒng)計(jì)圖(如圖):
(1)求出該班的總?cè)藬?shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求出“足球”在扇形統(tǒng)計(jì)圖中的圓心角是多少度;
(3)若該班所在的年級(jí)共有1200人,請(qǐng)估計(jì)選籃球的學(xué)生有多少人.
【答案】(1)50人,補(bǔ)圖見解析;(2)50.4°;(3)408人
【解析】
(1)根據(jù)選擇C的學(xué)生人數(shù)和所占的百分比,可以求得本班的總?cè)藬?shù),然后根據(jù)扇形統(tǒng)計(jì)圖中的數(shù)據(jù),可以得到選擇E的學(xué)生數(shù),然后即可得到選擇A的學(xué)生數(shù),從而可以將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)根據(jù)條形統(tǒng)計(jì)圖中的數(shù)據(jù),可以計(jì)算出“足球”在扇形統(tǒng)計(jì)圖中的圓心角是多少度;
(3)根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù),可以計(jì)算出選籃球的學(xué)生有多少人.
解:(1)該班的總?cè)藬?shù)為:12÷24%=50(人),
選擇E的學(xué)生有:50×10%=5(人),
選擇A的學(xué)生有:50﹣7﹣12﹣9﹣5=17(人),
補(bǔ)全的條形統(tǒng)計(jì)圖如下圖所示:
(2)“足球”在扇形統(tǒng)計(jì)圖中的圓心角是:360°×=50.4°,
即“足球”在扇形統(tǒng)計(jì)圖中的圓心角是50.4°;
(3)1200×=408(人),
答:選籃球的學(xué)生有408人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠MCN=45°,點(diǎn)B在射線CM上,點(diǎn)A是射線CN上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合).點(diǎn)B關(guān)于CN的對(duì)稱點(diǎn)為點(diǎn)D,連接AB、AD和CD,點(diǎn)F在直線BC上,且滿足AF⊥AD.小明在探究圖形運(yùn)動(dòng)的過程中發(fā)現(xiàn)AF=AB:始終成立.
如圖,當(dāng)0°<∠BAC<90°時(shí).
① 求證:AF=AB;
② 用等式表示線段與之間的數(shù)量關(guān)系,并證明;
當(dāng)90°<∠BAC<135°時(shí),直接用等式表示線段CF、CD與CA之間的數(shù)量關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,BC為⊙O的直徑,點(diǎn)E為△ABC的內(nèi)心,連接AE并延長(zhǎng)交⊙O于D點(diǎn),連接BD并延長(zhǎng)至F,使得BD=DF,連接CF、BE.
(1)求證:DB=DE;
(2)求證:直線CF為⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,且過點(diǎn)A(3,0),二次函數(shù)圖象的對(duì)稱軸是x=1,下列結(jié)論正確的是
A.b2>4acB.ac>0C.a–b+c>0D.4a+2b+c<0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x(x﹣b)﹣與y軸相交于A點(diǎn),與x軸相交于B、C兩點(diǎn),且點(diǎn)C在點(diǎn)B的右側(cè),設(shè)拋物線的頂點(diǎn)為P.
(1)若點(diǎn)B與點(diǎn)C關(guān)于直線x=1對(duì)稱,求b的值;
(2)若OB=OA,求△BCP的面積;
(3)當(dāng)﹣1≤x≤1時(shí),該拋物線上最高點(diǎn)與最低點(diǎn)縱坐標(biāo)的差為h,求出h與b的關(guān)系;若h有最大值或最小值,直接寫出這個(gè)最大值或最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)O是∠ABC和∠ACB兩個(gè)內(nèi)角平分線的交點(diǎn),過點(diǎn)O作EF∥BC分別交AB,AC于點(diǎn)E,F,已知△ABC的周長(zhǎng)為8,BC=x,△AEF的周長(zhǎng)為y,則表示y與x的函數(shù)圖象大致是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB=10,弦AC=6,∠ACB的平分線交⊙O于D,過點(diǎn)D作DE∥AB交CA的延長(zhǎng)線于點(diǎn)E,連接AD,BD.
(1)由AB,BD,圍成的曲邊三角形的面積是 ;
(2)求證:DE是⊙O的切線;
(3)求線段DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC的紙片中,∠C=90°,AC=5,AB=13.點(diǎn)D在邊BC上,以AD為折痕將△ADB折疊得到△ADB′,AB′與邊BC交于點(diǎn)E.若△DEB′為直角三角形,則BD的長(zhǎng)是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,,AD平分∠BAC,交BC于點(diǎn)D,點(diǎn)O在AB上,⊙O經(jīng)過A、D兩點(diǎn),交AC于點(diǎn)E,交AB于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑是2cm,E是弧AD的中點(diǎn),求陰影部分的面積(結(jié)果保留π和根號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com