【題目】如圖,在平面直角坐標(biāo)系中,先把梯形ABCD向左平移6個(gè)單位長(zhǎng)度得到梯形A1B1C1D1.

(1)請(qǐng)你在平面直角坐標(biāo)系中畫(huà)出梯形A1B1C1D1 ;

(2)以點(diǎn)C1為旋轉(zhuǎn)中心,把(1)中畫(huà)出的梯形繞點(diǎn)C1順時(shí)針?lè)较蛐D(zhuǎn) 得到梯形A2B2C2D2 ,請(qǐng)你畫(huà)出梯形A2B2C2D2

【答案】(1)畫(huà)圖見(jiàn)解析;(2)畫(huà)圖見(jiàn)解析.

【解析】1)將A、BC、D按平移條件找出它的對(duì)應(yīng)點(diǎn)A1B1、C1、D1順次連接A1B1、B1C1、C1D1,D1A1即得到平移后的圖形;

2)因?yàn)?/span>C1的對(duì)應(yīng)點(diǎn)還是C1,利用對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角,作出D1的對(duì)應(yīng)點(diǎn)D2,然后利用旋轉(zhuǎn)前、后的圖形全等即可作出所求圖形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn)A(﹣3,0)、B(0,4),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到△1、△2、△3、△4…,則△2016的直角坐標(biāo)頂點(diǎn)的坐標(biāo)為( )

A.(8053,0)
B.(8064,0)
C.(8053,
D.(8064,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

(1)2-7+5-3;

(2)-;

(3)(-40)-(+27)+19-24-(-32);

(4)0.5-;

(5)|-3.5|-

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校為了豐富學(xué)生課余活動(dòng)開(kāi)展了一次“校園歌手大獎(jiǎng)賽”的歌詠比賽,共有18名同學(xué)入圍,他們的決賽成績(jī)?nèi)缦卤恚?/span>

成績(jī)(分)

9.40

9.50

9.60

9.70

9.80

9.90

人數(shù)

2

3

5

4

3

1

則入圍同學(xué)決賽成績(jī)的中位數(shù)和眾數(shù)分別是( )
A.9.70,9.60
B.9.60,9.60
C.9.60,9.70
D.9.65,9.60

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1的正方形ABCD中,動(dòng)點(diǎn)F,E分別以相同的速度從D,C兩點(diǎn)同時(shí)出發(fā)向C和B運(yùn)動(dòng)(任何一個(gè)點(diǎn)到達(dá)即停止),過(guò)點(diǎn)P作PM∥CD交BC于M點(diǎn),PN∥BC交CD于N點(diǎn),連接MN,在運(yùn)動(dòng)過(guò)程中, ①AE和BF的位置關(guān)系為;
②線段MN的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,E、F是對(duì)角線BD上的點(diǎn),∠1=∠2.
(1)求證:BE=DF;
(2)求證:AF∥CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】規(guī)定:[x]表示不大于x的最大整數(shù),(x)表示不小于x的最小整數(shù),[x)表示最接近x的整數(shù)(xn+0.5,n為整數(shù)),例如:[2.3]=2,(2.3)=3,[2.3)=2.當(dāng)﹣1<x<1時(shí),化簡(jiǎn) [x]+x+[x)的結(jié)果是__________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠BAP與∠APD互補(bǔ),∠1=2,試說(shuō)明:∠E=F.請(qǐng)?jiān)谙旅娴睦ㄌ?hào)中填上理由.

解:∵∠BAP與∠APD互補(bǔ)(      ),

ABCD(             ),

∴∠BAP=APC(          ).

又∵∠1=2(      ),

∴∠BAP-1=APC-2(     ),

即∠3=4,

AEPF(             ),

∴∠E=F(             ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖A在數(shù)軸上所對(duì)應(yīng)的數(shù)為﹣2

1)點(diǎn)B在點(diǎn)A右邊距A點(diǎn)4個(gè)單位長(zhǎng)度,求點(diǎn)B所對(duì)應(yīng)的數(shù);

2)在(1)的條件下,點(diǎn)A以每秒2個(gè)單位長(zhǎng)度沿?cái)?shù)軸向左運(yùn)動(dòng),點(diǎn) B 以每秒2個(gè)單位長(zhǎng)度沿?cái)?shù)軸向右運(yùn)動(dòng),當(dāng)點(diǎn)A運(yùn)動(dòng)到﹣6所在的點(diǎn)處時(shí),求A,B兩點(diǎn)間距離.

3)在2)的條件下,現(xiàn)A點(diǎn)靜止不動(dòng),B點(diǎn)再以每秒2個(gè)單位長(zhǎng)度沿?cái)?shù)軸向左運(yùn)動(dòng)時(shí),經(jīng)過(guò)多長(zhǎng)時(shí)間A,B兩點(diǎn)相距4個(gè)單位長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案