【題目】如圖1,以△ABC的邊AB為直徑的⊙O交邊BC于點E,過點E作⊙O的切線交AC于點D,且ED⊥AC.

(1)試判斷△ABC的形狀,并說明理由;
(2)如圖2,若線段AB、DE的延長線交于點F,∠C=75°,CD=2﹣ ,求⊙O的半徑和BF的長.

【答案】
(1)

解:△ABC是等腰三角形,理由是:如圖1,

連接OE,

∵DE是⊙O的切線,

∴OE⊥DE,

∵ED⊥AC,

∴AC∥OE,

∴∠1=∠C,

∵OB=OE,

∴∠1=∠B,

∴∠B=∠C,

∴△ABC是等腰三角形


(2)

解:如圖2,

過點O作OG⊥AC,垂足為G,則得四邊形OGDE是矩形,

∵△ABC是等腰三角形,

∴∠B=∠C=75°,

∴∠A=180°﹣75°﹣75°=30°,

設(shè)OG=x,則OA=OB=OE=2x,AG= x,

∴DG=0E=2x,

根據(jù)AC=AB得:4x= x+2x+2﹣

x=1,

∴0E=OB=2,

在直角△OEF中,∠EOF=∠A=30°,

cos30= ,OF= =2÷ = ,

∴BF= ﹣2,⊙O的半徑為2


【解析】(1)連接OE,根據(jù)切線性質(zhì)得OE⊥DE,與已知中的ED⊥AC得平行,由此得∠1=∠C,再根據(jù)同圓的半徑相等得∠1=∠B,可得出三角形為等腰三角形;(2)通過作輔助線構(gòu)建矩形OGDE,再設(shè)與半徑有關(guān)系的邊OG=x,通過AB=AC列等量關(guān)系式,可求得結(jié)論.本題考查了切線的性質(zhì),由定理可知,若出現(xiàn)圓的切線,必連過切點的半徑,構(gòu)造定理圖,得出垂直關(guān)系,由此得出平行和角的關(guān)系,根據(jù)兩個角相等的三角形是等腰三角形可得△ABC是等腰三角形;第二問運用了直角三角形30°角的性質(zhì)及等腰三角形和矩形的有關(guān)性質(zhì),關(guān)鍵是找出恰當?shù)牡攘筷P(guān)系式:AC=AB,設(shè)未知數(shù),列關(guān)于x的一元一次方程得出結(jié)論.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y= x+2與雙曲線相交于點A(m,3),與x軸交于點C.

(1)求雙曲線解析式;
(2)點P在x軸上,如果△ACP的面積為3,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正△ABC的邊長為4,點P為BC邊上的任意一點(不與點B、C重合),且∠APD=60°,PD交AB于點D.設(shè)BP=x,BD=y,則y關(guān)于x的函數(shù)圖象大致是( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點P(x0 , y0)和直線y=kx+b,則點P到直線y=kx+b的距離證明可用公式d= 計算.
例如:求點P(﹣1,2)到直線y=3x+7的距離.
解:因為直線y=3x+7,其中k=3,b=7.
所以點P(﹣1,2)到直線y=3x+7的距離為:d= = = =
根據(jù)以上材料,解答下列問題:
(1)求點P(1,﹣1)到直線y=x﹣1的距離;
(2)已知⊙Q的圓心Q坐標為(0,5),半徑r為2,判斷⊙Q與直線y= x+9的位置關(guān)系并說明理由;
(3)已知直線y=﹣2x+4與y=﹣2x﹣6平行,求這兩條直線之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A在函數(shù)y= (x>0)的圖象上,且OA=4,過點A作AB⊥x軸于點B,則△ABO的周長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從今年起,我市生物和地理會考實施改革,考試結(jié)果以等級形式呈現(xiàn),分A、B、C、D四個等級.某校八年級為了迎接會考,進行了一次模擬考試,隨機抽取部分學生的生物成績進行統(tǒng)計,繪制成如下兩幅不完整的統(tǒng)計圖.

(1)這次抽樣調(diào)查共抽取了名學生的生物成績.扇形統(tǒng)計圖中,D等級所對應(yīng)的扇形圓心角度數(shù)為°;
(2)將條形統(tǒng)計圖補充完整;
(3)如果該校八年級共有600名學生,請估計這次模擬考試有多少名學生的生物成績等級為D?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某自行車公司調(diào)查陽光中學學生對其產(chǎn)品的了解情況,隨機抽取部分學生進行問卷,結(jié)果分“非常了解”、“比較了解”、“一般了解”、“不了解”四種類型,分別記為A、B、C、D.根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖.

(1)本次問卷共隨機調(diào)查了名學生,扇形統(tǒng)計圖中m=
(2)請根據(jù)數(shù)據(jù)信息補全條形統(tǒng)計圖.
(3)若該校有1000名學生,估計選擇“非常了解”、“比較了解”共約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABBC,射線CMBC,且BC=4,AB=1,點P是線段BC(不與點B、C重合)上的動點,過點PDPAP交射線CM于點D,連結(jié)AD.

(1)如圖1,若BP=3,求△ABP的周長;

(2)如圖2,若DP平分∠ADC,試猜測PBPC的數(shù)量關(guān)系,并說明理由;

(3)若△PDC是等腰三角形,作點B關(guān)于AP的對稱點B′,連結(jié)B′D,則B′D=_____.(請直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】
(1)計算:( 0﹣( 2+tan45°;
(2)解方程: =2.

查看答案和解析>>

同步練習冊答案