【題目】閱讀材料:各類方程的解法

求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為x=a的形式.求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來解;類似的,求解三元一次方程組,把它轉(zhuǎn)化為解二元一次方程組.求解一元二次方程,把它轉(zhuǎn)化為兩個(gè)一元一次方程來解.求解分式方程,把它轉(zhuǎn)化為整式方程來解,由于去分母可能產(chǎn)生增根,所以解分式方程必須檢驗(yàn).各類方程的解法不盡相同,但是它們有一個(gè)共同的基本數(shù)學(xué)思想轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.

轉(zhuǎn)化的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通過因式分解把它轉(zhuǎn)化為x(x2+x﹣2)=0,解方程x=0x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.

(1)問題:方程x3+x2﹣2x=0的解是x1=0,x2=________,x3=________;

(2)拓展:用轉(zhuǎn)化思想求方程=x的解;

(3)應(yīng)用:如圖,已知矩形草坪ABCD的長AD=8m,寬AB=3m,小華把一根長為10m的繩子的一端固定在點(diǎn)B,沿草坪邊沿BA,AD走到點(diǎn)P處,把長繩PB段拉直并固定在點(diǎn)P,然后沿草坪邊沿PD、DC走到點(diǎn)C處,把長繩剩下的一段拉直,長繩的另一端恰好落在點(diǎn)C.求AP的長.

【答案】(1)-2;1;(2)x=3;(3)AP的長為4m .

【解析】

(1)對(duì)方程左邊因式分解;(2)方程兩邊同時(shí)平方,得到一元二次方程,再因式分解;(3)根據(jù)題中的相等關(guān)系得到方程,再轉(zhuǎn)化為一元二次方程.

(1)-2;1

(2)解: =x,

方程的兩邊平方,得2x+3=x2

x2﹣2x﹣3=0

(x﹣3)(x+1)=0

∴x﹣3=0x+1=0

∴x1=3,x2=﹣1,

當(dāng)x=﹣1時(shí), = =1≠﹣1,

所以﹣1不是原方程的解.

所以方程 =x的解是x=3

(3)解:因?yàn)樗倪呅?/span>ABCD是矩形,

所以∠A=∠D=90°,AB=CD=3m

設(shè)AP=xm,則PD=(8﹣x)m

因?yàn)?/span>BP+CP=10,

BP= ,CP=

+ =10

=10﹣

兩邊平方,得(8﹣x)2+9=100﹣20 +9+x2

整理,得5 =4x+9

兩邊平方并整理,得x2﹣8x+16=0

即(x﹣4)2=0

所以x=4.

經(jīng)檢驗(yàn),x=4是方程的解.

答:AP的長為4m

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:

關(guān)于x的方程:x+c+的解為x1cx2;xc(可變形為x+c+)的解為x1c,x2x+c+的解為x1c,x2 Zx+c+的解為x1c,x2Z.

1)歸納結(jié)論:根據(jù)上述方程與解的特征,得到關(guān)于x的方程x+c+m0)的解為   

2)應(yīng)用結(jié)論:解關(guān)于y的方程ya

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某射擊運(yùn)動(dòng)員練習(xí)射擊,次成績分別是:、、、、(單位:環(huán)).下列說法中正確的是(

A. 若這次成績的中位數(shù)為,則 B. 若這次成績的眾數(shù)是,則

C. 若這次成績的方差為,則 D. 若這次成績的平均成績是,則

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高產(chǎn)品的附加值,某公司計(jì)劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進(jìn)行精加工后再投放市場.現(xiàn)有甲、乙兩個(gè)工廠都具備加工能力,公司派出相關(guān)人員分別到這兩個(gè)工廠了解情況,獲得如下信息:

信息一:甲工廠單獨(dú)加工完成這批產(chǎn)品比乙工廠單獨(dú)加工完成這批產(chǎn)品多用10天;

信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5倍.

根據(jù)以上信息,求甲、乙兩個(gè)工廠每天分別能加工多少件新產(chǎn)品.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)函數(shù)的解析式等于另兩個(gè)函數(shù)解析式的和,則這個(gè)函數(shù)稱為另兩個(gè)函數(shù)的“生成函數(shù)”。現(xiàn)有關(guān)于x的兩個(gè)二次函數(shù)y1、y2,且y1=a(x-m)2+4(m>0),y1、y2的“生成函數(shù)”為:y=x2+4x+14;當(dāng)x=m時(shí),y2=15;二次函數(shù)y2的圖象的頂點(diǎn)坐標(biāo)為(2,k)。

(1)求m的值;

(2)求二次函數(shù)y1、y2的解析式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別以RtABC的直角邊AC及斜邊AB向外作等邊ACD,等邊ABE已知BAC=30°,EFAB,垂足為F,連接DF

(1)試說明AC=EF;

(2)求證:四邊形ADFE是平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某中學(xué)準(zhǔn)備在校園里利用圍墻的一段,再砌三面墻,圍成一個(gè)矩形花園ABCD(圍墻MN最長可利用25m),現(xiàn)在已備足可以砌50m長的墻的材料,試設(shè)計(jì)一種砌法,使矩形花園的面積為300m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,、分別是邊的中點(diǎn),,下面四個(gè)結(jié)論:;②;③的面積與的面積之比為;④的周長與的周長之比為;其中正確的有________.(只填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分別為ABC三邊的長.

(1)如果x=-1是方程的根,試判斷ABC的形狀,并說明理由;

(2)如果方程有兩個(gè)相等的實(shí)數(shù)根,試判斷ABC的形狀,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案