【題目】如圖,在平面直角坐標(biāo)系xOy中,邊長為2的正方形OABC的頂點A、C分別在x軸、y軸的正半軸上,二次函數(shù)y=﹣ x2+bx+c的圖象經(jīng)過B、C兩點.
(1)求該二次函數(shù)的解析式;
(2)結(jié)合函數(shù)的圖象探索:當(dāng)y>0時x的取值范圍.
【答案】
(1)
解:∵正方形OABC的邊長為2,
∴點B、C的坐標(biāo)分別為(2,2),(0,2),
∴ ,
解得 ,
∴二次函數(shù)的解析式為y=﹣ x2+ x+2
(2)
解:令y=0,則﹣ x2+ x+2=0,
整理得,x2﹣2x﹣3=0,
解得x1=﹣1,x2=3,
∴二次函數(shù)與x軸的交點坐標(biāo)為(﹣1,0)、(3,0),
∴當(dāng)y>0時,x的取值范圍是﹣1<x<3
【解析】(1)根據(jù)正方形的性質(zhì)得出點B、C的坐標(biāo),然后利用待定系數(shù)法求函數(shù)解析式解答;(2)令y=0求出二次函數(shù)圖象與x軸的交點坐標(biāo),再根據(jù)y>0,二次函數(shù)圖象在x軸的上方寫出x的取值范圍即可.
【考點精析】認(rèn)真審題,首先需要了解二次函數(shù)的圖象(二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點),還要掌握二次函數(shù)的性質(zhì)(增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,P,B,C是圓上的四個點,∠APC=∠CPB=60°,AP,CB的延長線相交于點D.
(1)求證:△ABC是等邊三角形;
(2)若∠PAC=90°,AB=2 ,求PD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,∠A=80°,∠B和∠C的平分線相交于點O
(1)連接OA,求∠OAC的度數(shù);
(2)求:∠BOC。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把△ABC紙片沿DE折疊,當(dāng)點A落在四邊形BCDE內(nèi)部時,∠A與∠1、∠2之間的數(shù)量關(guān)系為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點,AE=ED,DF= DC,連接EF并延長交BC的延長線于點G.
(1)求證:△ABE∽△DEF;
(2)若正方形的邊長為4,求BG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過A(﹣1,0),B(5,0),C(0,- )三點.
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點P,使PA+PC的值最小,求點P的坐標(biāo);
(3)點M為x軸上一動點,在拋物線上是否存在一點N,使以A,C,M,N四點構(gòu)成的四邊形為平行四邊形?若存在,求點N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的袋子中裝有僅顏色不同的10個小球,其中紅球4個,黑球6個.
(1)先從袋子中取出m(m>1)個紅球,再從袋子中隨機摸出1個球,若“摸出的球是黑球”為必然事件,求m的值;
(2)先從袋子中取出m個紅球,再放入m個一樣的黑球并搖勻,隨機摸出1個黑球的概率等于 ,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于二次函數(shù)y=﹣ +x﹣4,下列說法正確的是( )
A.當(dāng)x>0時,y隨x的增大而增大
B.當(dāng)x=2時,y有最大值﹣3
C.圖象的頂點坐標(biāo)為(﹣2,﹣7)
D.圖象與x軸有兩個交點
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com