【題目】甲型H1N1流感球形病毒細(xì)胞的直徑約為0.00000156 m,這個數(shù)用科學(xué)記數(shù)法表示是__________.

【答案】1.56×10-6

【解析】絕對值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.0.00000156=1.56×10-6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式中能用完全平方公式進(jìn)行因式分解的是( 。

A. x2+x+1 B. x2+2x﹣1 C. x2﹣1 D. x2﹣6x+9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,ACB=90°,A=30°BDABC的角平分線,DEAB于點E

1)如圖1,連接EC,求證:EBC是等邊三角形;

2)點M是線段CD上的一點(不與點C,D重合),以BM為一邊,在BM的下方作BMG=60°,MGDE延長線于點G.請你在圖2中畫出完整圖形,并直接寫出MD,DGAD之間的數(shù)量關(guān)系;

3)如圖3,點N是線段AD上的一點,以BN為一邊,在BN的下方作BNG=60°,NGDE延長線于點G.試探究ND,DGAD數(shù)量之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算與化簡:

1|﹣2|+﹣22﹣2π﹣70;

2[﹣x﹣1y﹣2﹣3﹣yx2﹣x3y]÷x2y;

3÷32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果兩個角的兩邊分別平行,而其中一個角比另一個角的4倍少30°,那么這兩個角是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對兩個三角形滿足兩邊和其中一邊的對角對應(yīng)相等的情形進(jìn)行研究.

【初步思考】

我們不妨將問題用符號語言表示為:在ABCDEF中,AC=DF,BC=EFB=E,然后,對∠B進(jìn)行分類,可分為B是直角、鈍角、銳角三種情況進(jìn)行探究.

【深入探究】

第一種情況:當(dāng)∠B是直角時,ABC≌△DEF

(1)如圖①,在ABCDEFAC=DFBC=EF,B=E=90°,根據(jù)______,可以知道RtABCRtDEF

第二種情況:當(dāng)∠B是鈍角時,ABC≌△DEF

(2)如圖②,在ABCDEF,AC=DFBC=EF,B=E,且∠BE都是鈍角,求證:ABC≌△DEF

第三種情況:當(dāng)∠B是銳角時,ABCDEF不一定全等.

(3)在ABCDEF,AC=DFBC=EF,B=E,且∠BE都是銳角,請你用尺規(guī)在圖③中作出DEF,使DEFABC不全等.(不寫作法,保留作圖痕跡)

(4)B還要滿足什么條件,就可以使ABC≌△DEF?請直接寫出結(jié)論:在ABCDEF中,AC=DF,BC=EF,B=E,且∠B、E都是銳角,若______,則ABC≌△DEF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,正確的是

A. 三個角對應(yīng)相等的兩個三角形全等 B. 面積相等的兩個三角形全等

C. 全等三角形的面積相等 D. 兩邊和其中一邊的對角對應(yīng)相等的兩個三角形全等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:ABC的周長為30cm,把ABC的邊AC對折,使頂點C和點A重合,折痕交BC邊于點D,交AC邊與點E,連接AD,若AE=4cm,則ABD的周長是(

A. 22cm B. 20cm C. 18cm D. 15cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=a(x﹣2)2+c,當(dāng)x=x1時,函數(shù)值為y1;當(dāng)x=x2時,函數(shù)值為y2,若|x1﹣2|>|x2﹣2|,則下列表達(dá)式正確的是(

A.y1+y20 B.y1﹣y20 C.a(chǎn)(y1﹣y20 D.a(chǎn)(y1+y20

查看答案和解析>>

同步練習(xí)冊答案