12、如圖,以△ABC的三邊為邊,在BC的同側(cè)作三個等邊△ABD、△BEC、△ACF.
(1)判斷四邊形ADEF的形狀,并證明你的結(jié)論;
(2)當△ABC滿足什么條件時,四邊形ADEF是菱形?是矩形?
分析:(1)由題意易得△BDE≌△BAC,∴DE=AC=AF,同理可證,EF=AB=AD,∴ADEF為平行四邊形;
(2)AB=AC時,可得ADEF的鄰邊相等,所以ADEF為菱形,AEDF要是矩形,則∠DEF=90°,由∠DEF═∠BED+∠BEC+∠CEF,可推出∠BAC=150°時為矩形.
解答:解:(1)ADEF為平行四邊形
?BD=AB,BE=BC;
∠DBA=∠EBC=60°?∠DBA-∠EBA=∠EBC-∠EBA
?∠DBE=∠ABC;
?△BDE≌△BAC
?DE=AC=AF
同理可證:△ECF≌△BCA
?EF=AB=AD
?ADEF為平行四邊形

(2)AB=AC時為菱形,∠BAC=150°時為矩形.
∵AB=AC,
∴AD=AF.
∴ADEF是菱形.
∴∠DEF=90°
=∠BED+∠BEC+∠CEF
=∠BCA+60°+∠CBA
=180-∠BAC+60°
=240°-∠BAC
∴∠BAC=150°
點評:此題主要考查平行四邊形、矩形、菱形的判定.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

25、如圖,以△ABC的三邊為邊,在BC的同一側(cè)分別作三個等邊三角形,△ABD,△BCE和△ACF.
(1)求證:△DBE≌△ABC≌△FEC;
(2)判斷四邊形ADEF的形狀并證明你的結(jié)論;
(3)當△ABC滿足什么條件時,四邊形ADEF為矩形?(寫出猜想即可,不要求證明)
(4)當△ABC滿足什么條件時,四邊形ADEF為菱形?(寫出猜想即可,不要求證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

16、如圖,以△ABC的三邊為邊,在BC的同側(cè)分別另作三個等邊三角形,即△ABD,△BCE,△ACF.
(1)求證:四邊形ADEF是平行四邊形;
(2)在△ABC滿足什么條件時,四邊形ADEF是矩形;
(3)對于任意△ABC,四邊形ADEF是否總存在?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,以△ABC的三頂點為圓心,半徑為1,作兩兩不相交的扇形,則圖中三個扇形面積之和是
1
2
π
1
2
π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,以△ABC的各邊為邊分別向外作正方形,所得到的三個正方形的面積分別為S1=36,S2=64,S3=100,則△ABC的面積是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,以△ABC的三邊為邊在BC的同一側(cè)分別作三個等邊三角形,即△ABD、△BCE、△ACF

(1)證明四邊形ADEF是平行四邊形.
(2)當△ABC滿足條件
∠BAC=150°
∠BAC=150°
時,四邊形ADEF為矩形.
(3)當△ABC滿足條件
∠BAC=60°
∠BAC=60°
時,四邊形ADEF不存在.
(4)當△ABC滿足條件
AB=AC且∠BAC≠60°(或AB=AC≠BC)
AB=AC且∠BAC≠60°(或AB=AC≠BC)
時,四邊形ADEF為菱形.

查看答案和解析>>

同步練習冊答案