分析 (1)首先證明∠BOD=60°,再證明AC∥PG即可解決問題.
(2)欲證明四邊形AGKC是平行四邊形,只要證明,AG=CK,AG∥CK即可.
解答 解:(1)∵AB為⊙O直徑,$\widehat{PB}$=$\widehat{PC}$,
∴PG⊥BC,即∠ODB=90°,
∵D是OP中點(diǎn),
∴OD=$\frac{1}{2}$OP=$\frac{1}{2}$OB,
∴cos∠BOD=$\frac{OD}{OB}$=$\frac{1}{2}$,
∴∠BOD=60°,
∵AB為⊙O直徑,
∴∠ACB=90°,
∴∠ACB=∠ODB,
∴AC∥PG,
∴∠BAC=∠BOD=60°.
(2)在△CDK和△BDP中,
$\left\{\begin{array}{l}{CD=DB}\\{∠CDK=∠PDB}\\{DK=DP}\end{array}\right.$,
∴△CDK≌△BDP,
∴CK=PB,∠OPB=∠CKD,
∵∠AOG=∠BOP,
∴AG=BP,
∴AG=CK,
∵OP=OB,
∴∠OPB=∠OBP,
∵∠G=∠OPB,
∴∠G=∠CKP,
∴AG∥CK,
∴四邊形AGCK是平行四邊形.
點(diǎn)評 本題考查垂徑定理、平行四邊形的判定和性質(zhì)、圓、全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是靈活應(yīng)用這些知識解決問題,屬于中考?碱}型.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com