已知,如圖,∠B=∠C="90" º,M是BC的中點,DM平分∠ADC.
 
(1)若連接AM,則AM是否平分∠BAD?請你證明你的結(jié)論;
(2)線段DM與AM有怎樣的位置關(guān)系?請說明理由.

(1)平分;(2)DM⊥AM

解析試題分析:(1)過點M作ME⊥AD于點E,再根據(jù)角平分線的性質(zhì)得到MC=ME,由M為BC的中點可得MC=MB即得ME=MB,再結(jié)合MB⊥AB,ME⊥AD即可證得結(jié)論;
(2)根據(jù)角平分線的性質(zhì)可得∠ADM=∠ADC,∠DAM=∠BAD,由∠B=∠C=90º可得AB//CD,即可得到∠ADC+∠BAD=180º,再根據(jù)角平分線的性質(zhì)求解即可.
(1)AM是平分∠BAD,
理由如下:過點M作ME⊥AD于點E

∵DM平分∠ADC且MC⊥ CD,ME⊥AD
∴MC=ME
∵M為BC的中點        
∴MC=MB
∴ME=MB      
∵MB⊥AB,ME⊥AD   
∴AM平分∠BAD;
(2)DM⊥AM
理由如下:∵DM平分∠ADC      
∴∠ADM=∠ADC
∵AM平分∠BAD      
∴∠DAM=∠BAD
∵∠B=∠C=90º     
∴AB//CD
∴∠ADC+∠BAD=180º
∴∠ADM+∠DAM=∠ADC+∠BAD=(∠ADC+∠BAD)=90º 
∴∠DMA=90º    
∴DM⊥AM.
考點:角平分線的判定和性質(zhì)
點評:角平分線的性質(zhì)是初中數(shù)學的重點,貫穿于整個初中數(shù)學的學習,是中考中比較常見的知識點,一般難度不大,需熟練掌握.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

2007年5月17日我市榮獲“國家衛(wèi)生城市稱號”.在“創(chuàng)衛(wèi)”過程中,要在東西方向M、N兩地之間修建一條道路.已知:如圖C點周圍180m范圍內(nèi)為文物保護區(qū),在MN上點A處測得C在A的北偏東60°方向上,從A向東走500m到達B處精英家教網(wǎng),測得C在B的北偏西45°方向上.
(1)NM是否穿過文物保護區(qū)?為什么?(參考數(shù)據(jù):
3
≈1.732)
(2)若修路工程順利進行,要使修路工程比原計劃提前5天完成,需將原定的工作效率提高25%,則原計劃完成這項工作需要多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

11、已知,如圖,正比例函數(shù)與反比例函數(shù)的圖象相交于A、B兩點,A點坐標為(2,1),分別以A、B為圓心的圓與x軸相切,則圖中兩個陰影部分面積的和為
π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,∠1=∠2,
 
.求證:AB=AC.
(1)在橫線上添加一個使命題的結(jié)論成立的條件;
(2)寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,直角坐標系內(nèi)的矩形ABCD,頂點A的坐標為(0,3),BC=2AB,P為
AD邊上一動點(與點A、D不重合),以點P為圓心作⊙P與對角線AC相切于點F,過P、F作直線L,交BC邊于點E,當點P運動到點P1位置時,直線L恰好經(jīng)過點B,此時直線的解析式是y=2x+1,
(Ⅰ)求BC、AP1的長;
(Ⅱ)設AP=m,梯形PECD的面積為S,求S與m之間的函數(shù)關(guān)系式,寫出自變量m的取值范圍;
(Ⅲ)以點E為圓心作⊙E與x軸相切,探究并猜想:⊙P和⊙E有哪幾種位置關(guān)系,并求出AP相應的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,拋物線y=-
3
3
x2-
2
3
3
x+
3
的圖象與x軸分別交于A,B兩點,與y軸交精英家教網(wǎng)于C點,⊙M經(jīng)過原點O及點A、C,點D是劣弧
OA
上一動點(D點與A、O不重合).
(1)求拋物線的頂點E的坐標;
(2)求⊙M的面積;
(3)連CD交AO于點F,延長CD至G,使FG=2,試探究,當點D運動到何處時,直線GA與⊙M相切,并請說明理由.

查看答案和解析>>

同步練習冊答案