【題目】如圖,已知∠ABC=90°,D是直線AB上的點(diǎn),AD=BC.
(1)如圖1,過(guò)點(diǎn)A作AF⊥AB,并截取AF=BD,連接DC、DF、CF,判斷△CDF的形狀并證明;
(2)如圖2,E是直線BC上一點(diǎn),且CE=BD,直線AE、CD相交于點(diǎn)P,∠APD的度數(shù)是一個(gè)固定的值嗎?若是,請(qǐng)求出它的度數(shù);若不是,請(qǐng)說(shuō)明理由.
【答案】(1)見(jiàn)解析;
(2)∠APD=∠FCD=45°.
【解析】
試題分析:(1)利用SAS證明△AFD和△BDC全等,再利用全等三角形的性質(zhì)得出FD=DC,即可判斷三角形的形狀;
(2)作AF⊥AB于A,使AF=BD,連結(jié)DF,CF,利用SAS證明△AFD和△BDC全等,再利用全等三角形的性質(zhì)得出FD=DC,∠FDC=90°,即可得出∠FCD=∠APD=45°.
試題解析:(1)△CDF是等腰直角三角形,理由如下:
∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,
在△FAD與△DBC中,,∴△FAD≌△DBC(SAS),
∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,
∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,
∴△CDF是等腰直角三角形;
(2)作AF⊥AB于A,使AF=BD,連結(jié)DF,CF,如圖,∵AF⊥AD,∠ABC=90°,
∴∠FAD=∠DBC,在△FAD與△DBC中,,∴△FAD≌△DBC(SAS),
∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,
∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形,
∴∠FCD=45°,∵AF∥CE,且AF=CE,∴四邊形AFCE是平行四邊形,
∴AE∥CF,∴∠APD=∠FCD=45°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用科學(xué)記數(shù)法記出的數(shù) “2.02×10﹣7”,它原來(lái)的數(shù)是( 。
A.0.0000000202
B.20200000
C.0.000000202
D.0.00000202
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】電影《無(wú)雙》上映僅10天,票房已經(jīng)達(dá)到10億元.設(shè)平均每天票房的增長(zhǎng)率為x,若2天后票房達(dá)到12億元,可列方程為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)一個(gè)3倍的放大鏡看一個(gè)△ABC,下面說(shuō)法正確的是( 。
A. △ABC放大后,∠A是原來(lái)的3倍
B. △ABC放大后周長(zhǎng)是原來(lái)的3倍
C. △ABC放大后,面積是原來(lái)的3倍
D. 以上都不對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店經(jīng)銷(xiāo)一種商品,由于進(jìn)價(jià)降低了5%,出售價(jià)不變,使得利潤(rùn)由m%提高到(m+6)%,則m的值為( 。
A.10
B.12
C.14
D.17
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(已知關(guān)于x的方程x2-(2m+1)x+m(m+1)=0.
求證:方程總有兩個(gè)不相等的實(shí)數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)P(1,3)關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)Q,則點(diǎn)Q的坐標(biāo)為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com