操作:在△ABC中,AC=BC=2,∠C=90°.將一塊足夠大的等腰直角三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉,三角板的兩直角邊分別交射線AC、CB于D、E兩點.如圖①②③是旋轉三角板得到的圖形中的3種情況.
(1)三角板繞點P旋轉,當PD⊥AC時,如圖①,四邊形PDCE是正方形,則PD=PE.當PD與AC不垂直時,如圖②、③,PD=PE還成立嗎?并選擇其中的一個圖形證明你的結論.
(2)三角板繞點P旋轉,△PEB是否成為等腰三角形?若能,求出此時CE的長;若不能,請說明理由.
(3)若將三角板的直角頂點放在斜邊AB上的M處,且AM:MB=1:3,和前面一樣操作,如圖④,試問線段MD和ME之間有什么數(shù)量關系?并結合圖形加以證明.

【答案】分析:(1)因為△ABC是等腰直角三角形,所以連接PC,容易得到△ACP、△CPB都是等腰直角三角形.連接CP,就可以證明△CDP≌△BEP,再根據(jù)全等三角形的對應邊相等,就可以證明DP=PE;
(2)△PBE能成為等腰三角形,位置有四種;
(3)作MH⊥CB,MF⊥AC,構造相似三角形△MDF和△MHE,然后利用對應邊成比例,就可以求出MD和ME之間的數(shù)量關系.
解答:解:(1)PD=PE依然成立.
證明:連接PC,∵△ABC是等腰直角三角形,P是AB中點,
∴CP=PB,CP⊥AB,∠ACP=∠ACB=45°,
即∠ACP=∠B=45°
∵∠DPC+∠CPE=∠BPE+∠CPE=90°,
∴∠DPC=∠BPE,
∴△PCD≌△PBE,
∴PD=PE.

(2)分三種情況討論如下:
①當PE=PB,點C與點E重合,即CE=0.
②當PE=BE時,CE=1.
③當BE=PB時
若點E在線段CB上時,CE=,
若點E在CB延長線上時

(3)過點M作MF⊥AC,MH⊥BC.
∵∠C=90°,
∴四邊形CFMH是矩形即∠FMH=90°,MF=CH.
而HB=MH,

∵∠DMF+∠DMH=∠DMH+∠EMH=90°,
∴∠DMF=∠EMH,
∵∠MFD=∠MHE=90°,
∴△MFD∽△MHE,

點評:此題比較復雜,綜合考查全等三角形的判定與性質、相似三角形的判定與性質、矩形的判定與性質、圖形的變換.綜合性很強,勾股定理的計算要求也比較高.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

操作:在△ABC中,AC=BC=4
2
,∠C=90°.將一塊三角板的直角頂點放在斜邊AB的中點P處,將三角板繞P點旋轉,三角板自兩直角邊分別交射線AC、射線CB于D、E兩點,如右圖,①、②、③是旋轉三角板得到的圖形中的其中三種.
精英家教網
探究:(1)三角板繞P點旋轉時,觀察線段PD與PE之間有什么大小關系?它們的關系表示為
 
并以圖②為例,加以證明;
(2)三角板繞P點旋轉時△PBE是否能成為等腰三角形,若能,指出所有的情況(即求出△PBE為等腰三角形時CE的長);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

操作:在△ABC中,AC=BC=2,∠C=90°,將一塊等腰三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉,三角板的兩直角邊分別交射線AC、CB于D、E兩點.如圖①、②、③是旋轉三角板得到的圖形中的3種情況,研究:
(1)三角板繞點P旋轉,觀察線段PD與PE之間有什么數(shù)量關系?并結合圖②說明理由.
(2)三角板繞點P旋轉,△PBE是否能成為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時CE的長);若不能,請說明理由.
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

操作:在△ABC中,AC=BC=2,∠C=90°.將一塊足夠大的等腰直角三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉,三角板的兩直角邊分別交射線AC、CB于D、E兩點.如圖①②③是旋轉三角板得到的圖形中的3種情況.
(1)三角板繞點P旋轉,當PD⊥AC時,如圖①,四邊形PDCE是正方形,則PD=PE.當PD與AC不垂直時,如圖②、③,PD=PE還成立嗎?并選擇其中的一個圖形證明你的結論.
(2)三角板繞點P旋轉,△PEB是否成為等腰三角形?若能,求出此時CE的長;若不能,請說明理由.
(3)若將三角板的直角頂點放在斜邊AB上的M處,且AM:MB=1:3,和前面一樣操作,如圖④,試問線段MD和ME之間有什么數(shù)量關系?并結合圖形加以證明.
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

操作:在△ABC中,AC=BC=4,∠C=90°,將一塊直角三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉,三角板的兩直角邊分別交射線AC、CB于D、E兩點.如圖①、②、③是旋轉三角板得到的圖形中的3種情況.

探究:(1)如圖①,PD⊥AC于D,PE⊥BC于E,則重疊部分四邊形DCEP的面積為
4
4
,周長
8
8

(2)三角板繞點P旋轉,觀察線段PD與PE之間有什么數(shù)量關系?并結合圖②加以證明.
(3)三角板繞點P旋轉,△PBE是否能成為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時CE的長);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

操作:在△ABC中,AC=BC=2,∠C=90°.將一塊足夠大的等腰直角三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉,三角板的兩直角邊分別交射線AC、CB于D、E兩點.如圖①②③是旋轉三角板得到的圖形中的3種情況.
(1)三角板繞點P旋轉,當PD⊥AC時,如圖①,四邊形PDCE是正方形,則PD=PE.當PD與AC不垂直時,如圖②、③,PD=PE還成立嗎?并選擇其中的一個圖形證明你的結論.
(2)若D、E兩點分別在線段AC和CB上移動時,設BE的長為x,△APD的面積為y,求y與x之間的函數(shù)關系式.
(3)三角板繞點P旋轉,△PEB是否能成為等腰三角形?若能,求出此時CE的長;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案