操作:在△ABC中,AC=BC=4,∠C=90°,將一塊直角三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點.如圖①、②、③是旋轉(zhuǎn)三角板得到的圖形中的3種情況.

探究:(1)如圖①,PD⊥AC于D,PE⊥BC于E,則重疊部分四邊形DCEP的面積為
4
4
,周長
8
8

(2)三角板繞點P旋轉(zhuǎn),觀察線段PD與PE之間有什么數(shù)量關(guān)系?并結(jié)合圖②加以證明.
(3)三角板繞點P旋轉(zhuǎn),△PBE是否能成為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時CE的長);若不能,請說明理由.
分析:(1)根據(jù)點P是AB的中點可判斷出PD、PE是△ABC的中位線,繼而可得出PD、PE的長度,也可得出四邊形DCEP的周長和面積.
(2)先根據(jù)圖形可猜測PD=PE,從而連接CP,通過證明△PCD≌△PEB,可得出結(jié)論.
(3)題目只要求是等腰三角形,所以需要分三種情況進行討論,這樣每一種情況下的CE的長也就不難得出.
解答:解:(1)根據(jù)△ABC中,AC=BC=4,∠C=90°,
∵PD⊥AC,PE⊥BC,
∴PD∥BC,PE∥AC,
又∵點P是AB中點,
∴PD、PE是△ABC的中位線,
∴PD=CE=2,PE=CD=2,
∴四邊形DCEP是正方形,面積為2×2=4,周長為2+2+2+4=8;

(2)證明如下,AC=BC,∠C=90°,P為AB中點,連接CP,
∴CP平分∠C,CP⊥AB,
∵∠PCB=∠B=45°,
∴CP=PB,
∵∠DPC+∠CPE=∠CPE+∠EPB=90°,
∴∠DPC=∠EPB,
在△PCD和△PEB中,
∠DPC=∠EPB
CP=PB
∠DCP=∠B
,
∴△PCD≌△PBE(ASA),
∴PD=PE.

(3)△PBE是等腰三角形,
①當(dāng)PE=PB時,此時點C與點E重合,CE=0;
②1)當(dāng)PB=BE時,E在線段BC上,CE=2-
2
,2)E在CB的延長線上,CE=2+
2
;
③當(dāng)PE=BE時,CE=1.
點評:本題考查了旋轉(zhuǎn)的性質(zhì)、等腰三角形的性質(zhì)與判定,第三問的解答應(yīng)分情況進行論證,不能漏解,有一定難度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

操作:在△ABC中,AC=BC=4
2
,∠C=90°.將一塊三角板的直角頂點放在斜邊AB的中點P處,將三角板繞P點旋轉(zhuǎn),三角板自兩直角邊分別交射線AC、射線CB于D、E兩點,如右圖,①、②、③是旋轉(zhuǎn)三角板得到的圖形中的其中三種.
精英家教網(wǎng)
探究:(1)三角板繞P點旋轉(zhuǎn)時,觀察線段PD與PE之間有什么大小關(guān)系?它們的關(guān)系表示為
 
并以圖②為例,加以證明;
(2)三角板繞P點旋轉(zhuǎn)時△PBE是否能成為等腰三角形,若能,指出所有的情況(即求出△PBE為等腰三角形時CE的長);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

操作:在△ABC中,AC=BC=2,∠C=90°,將一塊等腰三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點.如圖①、②、③是旋轉(zhuǎn)三角板得到的圖形中的3種情況,研究:
(1)三角板繞點P旋轉(zhuǎn),觀察線段PD與PE之間有什么數(shù)量關(guān)系?并結(jié)合圖②說明理由.
(2)三角板繞點P旋轉(zhuǎn),△PBE是否能成為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時CE的長);若不能,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

操作:在△ABC中,AC=BC=2,∠C=90°.將一塊足夠大的等腰直角三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點.如圖①②③是旋轉(zhuǎn)三角板得到的圖形中的3種情況.
(1)三角板繞點P旋轉(zhuǎn),當(dāng)PD⊥AC時,如圖①,四邊形PDCE是正方形,則PD=PE.當(dāng)PD與AC不垂直時,如圖②、③,PD=PE還成立嗎?并選擇其中的一個圖形證明你的結(jié)論.
(2)三角板繞點P旋轉(zhuǎn),△PEB是否成為等腰三角形?若能,求出此時CE的長;若不能,請說明理由.
(3)若將三角板的直角頂點放在斜邊AB上的M處,且AM:MB=1:3,和前面一樣操作,如圖④,試問線段MD和ME之間有什么數(shù)量關(guān)系?并結(jié)合圖形加以證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

操作:在△ABC中,AC=BC=2,∠C=90°.將一塊足夠大的等腰直角三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點.如圖①②③是旋轉(zhuǎn)三角板得到的圖形中的3種情況.
(1)三角板繞點P旋轉(zhuǎn),當(dāng)PD⊥AC時,如圖①,四邊形PDCE是正方形,則PD=PE.當(dāng)PD與AC不垂直時,如圖②、③,PD=PE還成立嗎?并選擇其中的一個圖形證明你的結(jié)論.
(2)若D、E兩點分別在線段AC和CB上移動時,設(shè)BE的長為x,△APD的面積為y,求y與x之間的函數(shù)關(guān)系式.
(3)三角板繞點P旋轉(zhuǎn),△PEB是否能成為等腰三角形?若能,求出此時CE的長;若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案