【題目】如圖,已知Rt△ABD中,∠A=90°,將斜邊BD繞點(diǎn)B順時(shí)針?lè)较蛐D(zhuǎn)至BC,使BC∥AD,過(guò)點(diǎn)C作CE⊥BD于點(diǎn)E.
(1)求證:△ABD≌△ECB;
(2)若∠ABD=30°,BE=3,求弧CD的長(zhǎng).
【答案】
(1)證明:∵∠A=90°,CE⊥BD,
∴∠A=∠BEC=90°.
∵BC∥AD,
∴∠ADB=∠EBC.
∵將斜邊BD繞點(diǎn)B順時(shí)針?lè)较蛐D(zhuǎn)至BC,
∴BD=BC.
在△ABD和△ECB中,
∴△ABD≌△ECB
(2)解:∵△ABD≌△ECB,
∴AD=BE=3.
∵∠A=90°,∠BAD=30°,
∴BD=2AD=6,
∵BC∥AD,
∴∠A+∠ABC=180°,
∴∠ABC=90°,
∴∠DBC=60°,
∴弧CD的長(zhǎng)為 =2π
【解析】(1)因?yàn)檫@兩個(gè)三角形是直角三角形,根據(jù)旋轉(zhuǎn)的性質(zhì)得出BC=BD,由AD∥BC推出∠ADB=∠EBC,從而能證明△ABD≌△ECB;(2)由全等三角形的性質(zhì)得出AD=BE=3.根據(jù)30°角所對(duì)的直角邊等于斜邊的一半得出BD=2AD=6,根據(jù)平行線的性質(zhì)求出∠DBC=60°,再代入弧長(zhǎng)計(jì)算公式求解即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用弧長(zhǎng)計(jì)算公式和旋轉(zhuǎn)的性質(zhì)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握若設(shè)⊙O半徑為R,n°的圓心角所對(duì)的弧長(zhǎng)為l,則l=nπr/180;注意:在應(yīng)用弧長(zhǎng)公式進(jìn)行計(jì)算時(shí),要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的;①旋轉(zhuǎn)后對(duì)應(yīng)的線段長(zhǎng)短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對(duì)應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了盡快實(shí)施“脫貧致富奔小康”宏偉意圖,某縣扶貧工作隊(duì)為朝陽(yáng)溝村購(gòu)買了一批蘋(píng)果樹(shù)苗和梨樹(shù)苗,已知一棵蘋(píng)果樹(shù)苗比一棵梨樹(shù)苗貴2元,購(gòu)買蘋(píng)果樹(shù)苗的費(fèi)用和購(gòu)買梨樹(shù)苗的費(fèi)用分別是3500元和2500元.
(1)若兩種樹(shù)苗購(gòu)買的棵數(shù)一樣多,求梨樹(shù)苗的單價(jià);
(2)若兩種樹(shù)苗共購(gòu)買1100棵,且購(gòu)買兩種樹(shù)苗的總費(fèi)用不超過(guò)6000元,根據(jù)(1)中兩種樹(shù)苗的單價(jià),求梨樹(shù)苗至少購(gòu)買多少棵.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電器超市銷售A、B兩種不同型號(hào)的電風(fēng)扇,每種型號(hào)電風(fēng)扇的購(gòu)買單價(jià)分別為每臺(tái)310元,460元.
(1)若某單位購(gòu)買A,B兩種型號(hào)的電風(fēng)扇共50臺(tái),且恰好支出20000元,求A,B兩種型號(hào)電風(fēng)扇各購(gòu)買多少臺(tái)?
(2)若購(gòu)買A,B兩種型號(hào)的電風(fēng)扇共50臺(tái),且支出不超過(guò)18000元,求A種型號(hào)電風(fēng)扇至少要購(gòu)買多少臺(tái)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖填空:
(1)∵∠1=∠A(已知),
∴_________(______________________);
(2)∵∠1=∠D(已知),
∴________(________________________);
(3)∵______=∠F(已知),
∴AC∥DF(______________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠ABC=90°,AB=BC=4.點(diǎn)P是△ABC內(nèi)的一點(diǎn),連接PC,以PC為直角邊在PC的右上方作等腰直角三角形PCD.連接AD,若AD∥BC,且四邊形ABCD的面積為12,則BP的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中.AB=AC.∠BAC=90.E是AC邊上的一點(diǎn),延長(zhǎng)BA至D,使AD=AE,連接DE,CD.
(l)圖中是否存在兩個(gè)三角形全等?如果存在請(qǐng)寫(xiě)出哪兩個(gè)三角形全等,并且證明;如果不存在,請(qǐng)說(shuō)明理由;
(2)若∠CBE=30,求∠ADC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有這樣一個(gè)問(wèn)題:
計(jì)算代數(shù)式(其中x≠0)的值后填入下表.并根據(jù)表格所反映出的(其中x≠0)的值與x之間的變化規(guī)律進(jìn)行探究.
x | …… | 0.25 | 0.5 | 1 | 10 | 100 | 1000 | 10000 | …… |
…… | …… |
下面是小東計(jì)算代數(shù)式(其中x≠0)的值后填入表格,并根據(jù)表格進(jìn)行探究的過(guò)程,請(qǐng)補(bǔ)充完整:
x | …… | 0.25 | 0.5 | 1 | 10 | 100 | 1000 | 10000 | …… |
…… | 2 | 1 | …… |
(1)上表是(其中x≠0)與x的幾組對(duì)應(yīng)值.直接寫(xiě)出x=10時(shí),求代數(shù)式的值;
(2)隨著x值的增大,代數(shù)式的值有何變化(回答“增大”或“減少”);
(3)當(dāng)x值無(wú)限增大時(shí),代數(shù)式的值無(wú)限趨近于一個(gè)數(shù),這個(gè)數(shù)是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說(shuō)法: ①2a+b=0;
②當(dāng)﹣1≤x≤3時(shí),y<0;
③若(x1 , y1)、(x2 , y2)在函數(shù)圖象上,當(dāng)x1<x2時(shí),y1<y2
④9a+3b+c=0
其中正確的是( )
A.①②④
B.①②③
C.①④
D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A是雙曲線y= 在第一象限的分支上的一個(gè)動(dòng)點(diǎn),連結(jié)AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為邊作等邊△ABC,點(diǎn)C在第四象限.隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也不斷變化,但點(diǎn)C始終在雙曲線y= (k<0)上運(yùn)動(dòng),則k的值是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com