解:(1)移項(xiàng)得,4x+x=3+2,
合并同類項(xiàng)得,5x=5,
系數(shù)化為1得,x=1;
(2)去括號(hào)得,4x-60+3x=-4,
移項(xiàng)得,4x+3x=-4+60,
合并同類項(xiàng)得,7x=56,
系數(shù)化為1得,x=8;
(3)去分母得,5x-1=14,
移項(xiàng)得,5x=14+1,
合并同類項(xiàng)得,5x=15,
系數(shù)化為1得,x=3;
(4)去分母得,2(x-1)-(x+2)=6-3(2x-1),
去括號(hào)得,2x-2-x-2=6-6x+3,
移項(xiàng)得,2x-x+6x=6+3+2+2,
合并同類項(xiàng)得,7x=13,
系數(shù)化為1得,x=
;
(5)去括號(hào)得,4x-60+3x+4=0,
移項(xiàng)得,4x+3x=60-4,
合并同類項(xiàng)得,7x=56,
系數(shù)化為1得,x=8;
(6)去分母得,3(y+4)-2(2y-3)=12,
去括號(hào)得,3y+12-4y+6=12,
移項(xiàng)得,3y-4y=12-12-6,
合并同類項(xiàng)得,-y=-6,
系數(shù)化為1得,y=6;
(7)去括號(hào)得,
x-2-8=1,
移項(xiàng)得,
x=1+2+8,
合并同類項(xiàng)得,
x=11,
系數(shù)化為1得,x=55;
(8)去分母得,4y-2(y-1)=12-(2y-3),
去括號(hào)得,4y-2y+2=12-2y+3,
移項(xiàng)得,4y-2y+2y=12+3-2,
合并同類項(xiàng)得,4y=13,
系數(shù)化為1得,y=
.
分析:(1)根據(jù)一元一次方程的解法,移項(xiàng),合并同類項(xiàng),系數(shù)化為1即可得解;
(2)根據(jù)一元一次方程的解法,去括號(hào),移項(xiàng),合并同類項(xiàng),系數(shù)化為1即可得解;
(3)根據(jù)一元一次方程的解法,去分母,移項(xiàng),合并同類項(xiàng),系數(shù)化為1即可得解;
(4)根據(jù)一元一次方程的解法,去分母,去括號(hào),移項(xiàng),合并同類項(xiàng),系數(shù)化為1即可得解;
(5)根據(jù)一元一次方程的解法,去括號(hào),移項(xiàng),合并同類項(xiàng),系數(shù)化為1即可得解;
(6)根據(jù)一元一次方程的解法,去分母,去括號(hào),移項(xiàng),合并同類項(xiàng),系數(shù)化為1即可得解;
(7)按照從外到內(nèi)的順序去括號(hào),然后移項(xiàng),合并同類項(xiàng),系數(shù)化為1即可得解;
(8)根據(jù)一元一次方程的解法,去分母,去括號(hào),移項(xiàng),合并同類項(xiàng),系數(shù)化為1即可得解.
點(diǎn)評(píng):本題主要考查了解一元一次方程,注意在去分母時(shí),方程兩端同乘各分母的最小公倍數(shù)時(shí),不要漏乘沒有分母的項(xiàng),同時(shí)要把分子(如果是一個(gè)多項(xiàng)式)作為一個(gè)整體加上括號(hào).