【題目】已知:如圖所示的兩條拋物線的解析式分別是y1=-ax2-ax+1,y2=ax2-ax-1(其中a為常數(shù),且a>0).
(1)請(qǐng)寫(xiě)出三條與上述拋物線有關(guān)的不同類型的結(jié)論;
(2)當(dāng)a=時(shí),設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(M在N的左邊),y2=ax2-ax-1與x軸分別交于E,F兩點(diǎn)(E在F的左邊),觀察M,N,E,F四點(diǎn)坐標(biāo),請(qǐng)寫(xiě)出一個(gè)你所得到的正確結(jié)論,并說(shuō)明理由;
(3)設(shè)上述兩條拋物線相交于A,B兩點(diǎn),直線l,l1,l2都垂直于x軸,l1,l2分別經(jīng)過(guò)A,B兩點(diǎn),l在直線l1,l2之間,且l與兩條拋物線分別交于C,D兩點(diǎn),求線段CD的最大值?
【答案】(1)拋物線y1=-ax2-ax+1開(kāi)口向下,或拋物線y2=ax2-ax-1開(kāi)口向上;拋物線y1=-ax2-ax+1的對(duì)稱軸是x=-,或拋物線y2=ax2-ax-1的對(duì)稱軸是x=;拋物線y1=-ax2-ax+1經(jīng)過(guò)點(diǎn)(0,1),或拋物線y2=ax2-ax-1經(jīng)過(guò)點(diǎn)(0,-1);(2)因?yàn)?/span>MN=3,EF=3,所以MN=EF,見(jiàn)解析;(3)2
【解析】
(1)根據(jù)給出的拋物線的解析式并且結(jié)合函數(shù)的圖象寫(xiě)出三條不同的結(jié)論即可;
(2)先將a=代入拋物線解析式,分別求得M、N、E、F四點(diǎn)坐標(biāo),再根據(jù)四點(diǎn)坐標(biāo)寫(xiě)出合理的結(jié)論;
(3)根據(jù)題意求出CD關(guān)于x的解析式,然后求出當(dāng)x=0時(shí),CD的值最大.
解:(1)答案不唯一,只要合理均可.例如:
①拋物線y1=-ax2-ax+1開(kāi)口向下,
或拋物線y2=ax2-ax-1開(kāi)口向上;
②拋物線y1=-ax2-ax+1的對(duì)稱軸是x= ,
或拋物線y2=ax2-ax-1的對(duì)稱軸是x=;
③拋物線y1=-ax2-ax+1經(jīng)過(guò)點(diǎn)(0,1),
或拋物線y2=ax2-ax-1經(jīng)過(guò)點(diǎn)(0,-1);
④拋物線y1=-ax2-ax+1與y2=ax2-ax-1的形狀相同,但開(kāi)口方向相反;
⑤拋物線y1=-ax2-ax+1與y2=ax2-ax-1都與x軸有兩個(gè)交點(diǎn);
⑥拋物線y1=-ax2-ax+1經(jīng)過(guò)點(diǎn)(-1,1)或拋物線y2=ax2-ax-1經(jīng)過(guò)點(diǎn)(1,-1);
(2)當(dāng)a=時(shí),y1=-x2-x+1,令-x2-x+1=0,
解得xM=-2,xN=1.
y2=x2-x-1,令x2-x-1=0,解得xE=-1,xF=2.
①∵xM+xF=0,xN+xE=0,∴點(diǎn)M與點(diǎn)F關(guān)于原點(diǎn)對(duì)稱,點(diǎn)N與點(diǎn)E關(guān)于原點(diǎn)對(duì)稱;
②∵xM+xF+xN+xE=0,
∴M,N,E,F四點(diǎn)橫坐標(biāo)的代數(shù)和為0;
③∵MN=3,EF=3,∴MN=EF(或ME=NF).
(3)∵a>0,∴拋物線y1=-ax2-ax+1開(kāi)口向下,拋物線y2=ax2-ax-1開(kāi)口向上.
根據(jù)題意,得CD=y1-y2=(-ax2-ax+1)-(ax2-ax-1)=-2ax2+2.
∴當(dāng)x=0時(shí),CD的最大值是2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)北方又進(jìn)入了火災(zāi)多發(fā)季節(jié),為此,某校在全校1200名學(xué)生中隨機(jī)抽取一部分人進(jìn)行“安全防火,警鐘長(zhǎng)鳴”知識(shí)問(wèn)卷調(diào)查活動(dòng),對(duì)問(wèn)卷調(diào)查成績(jī)按“很好”、“較好”、“一般”“較差”四類匯總分析,并繪制了如下扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖.
(1)本次活動(dòng)共抽取了多少名同學(xué)?
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)根據(jù)以上調(diào)查結(jié)果分析,估計(jì)該校1200名學(xué)生中,對(duì)“安全防火”知識(shí)了解“較好”和“很好”的學(xué)生大約共計(jì)有多少名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線:沿軸翻折得到拋物線.
(1)求拋物線的頂點(diǎn)坐標(biāo);
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).
① 當(dāng)時(shí),求拋物線和圍成的封閉區(qū)域內(nèi)(包括邊界)整點(diǎn)的個(gè)數(shù);
② 如果拋物線C1和C2圍成的封閉區(qū)域內(nèi)(包括邊界)恰有個(gè)整點(diǎn),求m取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店經(jīng)銷一種學(xué)生用雙肩包,已知這種雙肩包的成本價(jià)為每個(gè)30元市場(chǎng)調(diào)查發(fā)現(xiàn),這種雙肩包每天的銷售量(單位:個(gè))與銷售單價(jià)(單位:元)有如下關(guān)系:.設(shè)這種雙肩包每天的銷售利潤(rùn)為元.
(1)求與之間的函數(shù)關(guān)系式.
(2)這種雙肩包的銷售單價(jià)定為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少元?
(3)該商店銷售這種雙肩包每天要獲得200元的銷售利潤(rùn),根據(jù)薄利多銷的原則,銷售單價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在ABCD中,DE平分∠ADB,交AB于E,BF平分∠CBD,交CD于F.
(1)求證:△ADE≌△CBF;
(2)當(dāng)AD與BD滿足什么關(guān)系時(shí),四邊形DEBF是矩形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為拓寬學(xué)生視野,促進(jìn)書(shū)本知識(shí)和生活經(jīng)驗(yàn)的深度融合,我市某中學(xué)決定組織部分班級(jí)開(kāi)展研學(xué)旅行活動(dòng),在參加此次活動(dòng)的師生中,若每位老師帶名學(xué)生,還剩名學(xué)生沒(méi)人帶;若每位老師帶名學(xué)生,則有一位老師少帶名學(xué)生.現(xiàn)有甲、乙兩種大客車,它們的載客量和租金如下表所示.
甲種客車 | 已和客車 | |
載客量(人/量) | ||
租金(元/輛) |
學(xué)校計(jì)劃此次研學(xué)旅行活動(dòng)的租車總費(fèi)用不超過(guò)元,為了安全,每輛客車上至少要有名老師.
(1)參加此次研學(xué)旅行活動(dòng)的老師和學(xué)生各有多少人?
(2)既要保證所有師生都有車坐,又要保證每輛客車上至少要有名老師,可求得租用客車總數(shù)為______輛.
(3)在(2)的條件下,你能得出哪幾種不同的租車方案?其中哪種租車方案最省錢(qián)?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,點(diǎn)E是對(duì)角線BD上的一點(diǎn),過(guò)點(diǎn)C作CF∥BD,且CF=DE,連接AE、BF、EF.
(1)求證:△ADE≌△BCF;
(2)若∠BFC-∠ABE=90°,判斷四邊形ABFE的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都是一個(gè)單位長(zhǎng)度,在平面直角坐標(biāo)系內(nèi),△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,4),B(1,1),C(3,1).
(1)畫(huà)出△ABC關(guān)于x軸對(duì)稱的△A1B1C1;
(2)畫(huà)出△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的△A2B2C2;
(3)在(2)的條件下,求線段BC掃過(guò)的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與軸交于點(diǎn)和點(diǎn).
(1)該拋物線的對(duì)稱軸為直線________;
(2)已知該拋物線的開(kāi)口向下,當(dāng)時(shí),的最大值是4,求此范圍內(nèi)的最小值.
(3)在(2)的條件下,直線過(guò)點(diǎn),且與該拋物線的另一個(gè)交點(diǎn)為點(diǎn),點(diǎn)為拋物線對(duì)稱軸上的動(dòng)點(diǎn),當(dāng)為等腰三角形時(shí)直接寫(xiě)出點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com