【題目】已知,梯形ABCD中,ADBCABC=90°,AB=3,BC=10,AD=5,MBC邊上的任意一點,聯(lián)結(jié)DM,聯(lián)結(jié)AM

(1)若AM平分∠BMD,求BM的長;

(2)過點AAEDM,交DM所在直線于點E

①設(shè)BM=xAE=yy關(guān)于x的函數(shù)關(guān)系式;

②聯(lián)結(jié)BE,當ABE是以AE為腰的等腰三角形時,請直接寫出BM的長.

【答案】(1)1或9;(2)①y=194.

【解析】

(1)考慮∠DMB為銳角和鈍角兩種情況即可解答;

(2) ①MHADH,根據(jù)勾股定理,用被開方式含x的二次根式表示DM,根據(jù)△ADM面積的兩種算法建立等式,即可求出y關(guān)于x的函數(shù)關(guān)系式;②分AB=AEEA=EB兩種情況討論求解.

解:(1)如圖1中,作DHBCH.則四邊形ABHD是矩形,AD=BH=5,AB=DH=3.

MA平分∠DMB時,易證∠AMB=AMD=DAM,可得DA=DM=5,

RtDMH中,DM=AD=5,DH=3,

MH===4,

BM=BH-MH=1,

AM平分∠BMD時,同法可證:DA=DM′,HM′=4,

BM′=BH+HM′=9.

綜上所述,滿足條件的BM的值為19.

(2)①如圖2中,作MHADH

RtDMH中,DM==,

SADM=ADMH=DMAE,

5×3=y

y=

②如圖3中,當AB=AE時,y=3,此時5×3=3

解得x=19.

如圖4中,當EA=EB時,DE=EM,

AEDM,

DA=AM=5,

RtABM中,BM==4.

綜上所述,滿足條件的BM的值為194.

故答案為:(1)1或9;(2)①y=194.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,直線AB、CD相交于點O,∠COE=90°,若∠BOD:∠BOC=1:5.

(1)求∠AOC的度數(shù);

(2)如圖,過點O作OF⊥AB,求∠DOF與∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知BC△ABD的角平分線,BC=DC,∠A=∠E=30°,∠D=50°.

(1)寫出AB=DE的理由;

(2)∠BCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=ax+b與雙曲線y= (x>0)交于A(x1 , y1),B(x2 , y2)兩點(A與B不重合),直線AB與x軸交于P(x0 , 0),與y軸交于點C.
(1)若A,B兩點坐標分別為(1,3),(3,y2),求點P的坐標.
(2)若b=y1+1,點P的坐標為(6,0),且AB=BP,求A,B兩點的坐標.
(3)結(jié)合(1),(2)中的結(jié)果,猜想并用等式表示x1 , x2 , x0之間的關(guān)系(不要求證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c與⊙M相交于A、B、C、D四點,其中A、B兩點的坐標分別為(﹣1,0),(0,﹣2),點D在x軸上且AD為⊙M的直徑.點E是⊙M與y軸的另一個交點,過劣弧 上的點F作FH⊥AD于點H,且FH=1.5

(1)求點D的坐標及該拋物線的表達式;
(2)若點P是x軸上的一個動點,試求出△PEF的周長最小時點P的坐標;
(3)在拋物線的對稱軸上是否存在點Q,使△QCM是等腰三角形?如果存在,請直接寫出點Q的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2017年懷柔區(qū)中考體育加試女子800米耐力測試中,同時起跑的李麗和吳梅所跑的路程與所用時間之間的函數(shù)圖象分別為線段OA和折線下列說法正確的是

A. 李麗的速度隨時間的增大而增大

B. 吳梅的平均速度比李麗的平均速度大

C. 在起跑后180秒時,兩人相遇

D. 在起跑后50秒時,吳梅在李麗的前面

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,E、F分別是CD、AB延長線上的點,連結(jié)EF,分別交AD、BC于點G、H.若∠1=∠2,∠A=∠C試說明AD//BCAB//CD.請完成下面的推理過程,填寫理由或數(shù)學式:

∵∠1=2,1=AGH(_________)

∴∠2=AGH(________)

AD//BC(________)

∴∠ADE=C(________)

∵∠A=C(已知

∴∠ADE=_______(等量代換)

AB//CD(_______)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,則下列結(jié)論中不正確的是(  )

A. AB=BC時,四邊形ABCD是菱形

B. ACBD時,四邊形ABCD是菱形

C. 當∠ABC=90°時,四邊形ABCD是矩形

D. AC=BD時,四邊形ABCD是正方形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中,正確的是( )

A. 平面內(nèi),沒有公共點的兩條線段平行

B. 平面內(nèi),沒有公共點的兩條射線平行

C. 沒有公共點的兩條直線互相平行

D. 互相平行的兩條直線沒有公共點

查看答案和解析>>

同步練習冊答案