【題目】已知,梯形ABCD中,AD∥BC,∠ABC=90°,AB=3,BC=10,AD=5,M是BC邊上的任意一點,聯(lián)結(jié)DM,聯(lián)結(jié)AM.
(1)若AM平分∠BMD,求BM的長;
(2)過點A作AE⊥DM,交DM所在直線于點E.
①設(shè)BM=x,AE=y求y關(guān)于x的函數(shù)關(guān)系式;
②聯(lián)結(jié)BE,當△ABE是以AE為腰的等腰三角形時,請直接寫出BM的長.
【答案】(1)1或9;(2)①y=.②1或9或4.
【解析】
(1)考慮∠DMB為銳角和鈍角兩種情況即可解答;
(2) ①作MH⊥AD于H,根據(jù)勾股定理,用被開方式含x的二次根式表示DM,根據(jù)△ADM面積的兩種算法建立等式,即可求出y關(guān)于x的函數(shù)關(guān)系式;②分AB=AE和EA=EB兩種情況討論求解.
解:(1)如圖1中,作DH⊥BC于H.則四邊形ABHD是矩形,AD=BH=5,AB=DH=3.
當MA平分∠DMB時,易證∠AMB=∠AMD=∠DAM,可得DA=DM=5,
在Rt△DMH中,DM=AD=5,DH=3,
∴MH===4,
∴BM=BH-MH=1,
當AM′平分∠BM′D時,同法可證:DA=DM′,HM′=4,
∴BM′=BH+HM′=9.
綜上所述,滿足條件的BM的值為1或9.
(2)①如圖2中,作MH⊥AD于H.
在Rt△DMH中,DM==,
∵S△ADM=ADMH=DMAE,
∴5×3=y
∴y=.
②如圖3中,當AB=AE時,y=3,此時5×3=3,
解得x=1或9.
如圖4中,當EA=EB時,DE=EM,
∵AE⊥DM,
∴DA=AM=5,
在Rt△ABM中,BM==4.
綜上所述,滿足條件的BM的值為1或9或4.
故答案為:(1)1或9;(2)①y=.②1或9或4.
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,直線AB、CD相交于點O,∠COE=90°,若∠BOD:∠BOC=1:5.
(1)求∠AOC的度數(shù);
(2)如圖,過點O作OF⊥AB,求∠DOF與∠EOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知BC是△ABD的角平分線,BC=DC,∠A=∠E=30°,∠D=50°.
(1)寫出AB=DE的理由;
(2)求∠BCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=ax+b與雙曲線y= (x>0)交于A(x1 , y1),B(x2 , y2)兩點(A與B不重合),直線AB與x軸交于P(x0 , 0),與y軸交于點C.
(1)若A,B兩點坐標分別為(1,3),(3,y2),求點P的坐標.
(2)若b=y1+1,點P的坐標為(6,0),且AB=BP,求A,B兩點的坐標.
(3)結(jié)合(1),(2)中的結(jié)果,猜想并用等式表示x1 , x2 , x0之間的關(guān)系(不要求證明).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c與⊙M相交于A、B、C、D四點,其中A、B兩點的坐標分別為(﹣1,0),(0,﹣2),點D在x軸上且AD為⊙M的直徑.點E是⊙M與y軸的另一個交點,過劣弧 上的點F作FH⊥AD于點H,且FH=1.5
(1)求點D的坐標及該拋物線的表達式;
(2)若點P是x軸上的一個動點,試求出△PEF的周長最小時點P的坐標;
(3)在拋物線的對稱軸上是否存在點Q,使△QCM是等腰三角形?如果存在,請直接寫出點Q的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2017年懷柔區(qū)中考體育加試女子800米耐力測試中,同時起跑的李麗和吳梅所跑的路程米與所用時間秒之間的函數(shù)圖象分別為線段OA和折線下列說法正確的是
A. 李麗的速度隨時間的增大而增大
B. 吳梅的平均速度比李麗的平均速度大
C. 在起跑后180秒時,兩人相遇
D. 在起跑后50秒時,吳梅在李麗的前面
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,E、F分別是CD、AB延長線上的點,連結(jié)EF,分別交AD、BC于點G、H.若∠1=∠2,∠A=∠C,試說明AD//BC和AB//CD.請完成下面的推理過程,填寫理由或數(shù)學式:
∵∠1=∠2,∠1=∠AGH(_________)
∴∠2=∠AGH(________)
∴AD//BC(________)
∴∠ADE=∠C(________)
∵∠A=∠C(已知)
∴∠ADE=_______(等量代換)
∴AB//CD(_______)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,則下列結(jié)論中不正確的是( )
A. 當AB=BC時,四邊形ABCD是菱形
B. 當AC⊥BD時,四邊形ABCD是菱形
C. 當∠ABC=90°時,四邊形ABCD是矩形
D. 當AC=BD時,四邊形ABCD是正方形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中,正確的是( )
A. 平面內(nèi),沒有公共點的兩條線段平行
B. 平面內(nèi),沒有公共點的兩條射線平行
C. 沒有公共點的兩條直線互相平行
D. 互相平行的兩條直線沒有公共點
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com