【題目】如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長(zhǎng)交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2,則EC的長(zhǎng)為( )

A.2
B.2
C.2
D.8

【答案】B
【解析】設(shè)半徑為r,則OC=r-2,AC=4,根據(jù)直角△AOC的勾股定理可得r=5,則AE=2r=10,連接BE,根據(jù)直徑所對(duì)的圓周角為直角可得∠B=90°,根據(jù)直角△ABE的勾股定理可得:BE=6,根據(jù)直角△CBE的勾股定理可得:CE=2
【考點(diǎn)精析】通過(guò)靈活運(yùn)用垂徑定理和圓周角定理,掌握垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧;頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在某場(chǎng)足球比賽中,球員甲從球門(mén)底部中心點(diǎn)O的正前方10m處起腳射門(mén),足球沿拋物線飛向球門(mén)中心線;當(dāng)足球飛離地面高度為3m時(shí)達(dá)到最高點(diǎn),此時(shí)足球飛行的水平距離為6m.已知球門(mén)的橫梁高為2.44m.

(1)在如圖所示的平面直角坐標(biāo)系中,問(wèn)此飛行足球能否進(jìn)球門(mén)?(不計(jì)其它情況)
(2)守門(mén)員乙站在距離球門(mén)2m處,他跳起時(shí)手的最大摸高為2.52m,他能阻止球員甲的此次射門(mén)嗎?如果不能,他至少后退多遠(yuǎn)才能阻止球員甲的射門(mén)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從①,②,③三個(gè)條件中選出兩個(gè)作為已知條件,另一個(gè)作為結(jié)論可以組成3個(gè)命題.

1)這三個(gè)命題中,真命題的個(gè)數(shù)為________;

2)選擇一個(gè)真命題,并且證明.(要求寫(xiě)出每一步的依據(jù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,頂點(diǎn)為(4,1)的拋物線交y軸于點(diǎn)A,交x軸于B,C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),已知C點(diǎn)坐標(biāo)為(6,0).

(1)求此拋物線的解析式;
(2)已知點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),且位于A,C兩點(diǎn)之間.問(wèn):當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAC的面積最大?求出△PAC的最大面積;
(3)連接AB,過(guò)點(diǎn)B作AB的垂線交拋物線于點(diǎn)D,以點(diǎn)C為圓心的圓與拋物線的對(duì)稱軸l相切,先補(bǔ)全圖形,再判斷直線BD與⊙C的位置關(guān)系并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】工廠工人小李生產(chǎn)A、B兩種產(chǎn)品.若生產(chǎn)A產(chǎn)品10件,生產(chǎn)B產(chǎn)品10件,共需時(shí)間350分鐘;若生產(chǎn)A產(chǎn)品30件,生產(chǎn)B產(chǎn)品20件,共需時(shí)間850分鐘.

1)小李每生產(chǎn)一件種產(chǎn)品和每生產(chǎn)一件種產(chǎn)品分別需要多少分鐘;

2)小李每天工作8個(gè)小時(shí),每月工作25天.如果小李四月份生產(chǎn)種產(chǎn)品(為正整數(shù))

①用含的代數(shù)式直接表示小李四月份生產(chǎn)種產(chǎn)品的件數(shù);

②已知每生產(chǎn)一件產(chǎn)品可得1.40元,每生產(chǎn)一件種產(chǎn)品可得2.80元,若小李四月份的工資不少于1500元,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AE平分∠BAC,BD=DC,DEBC,EMAB.若AB=9AC=5,則AM的長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,∠B=D=90°,E、F分別是邊BC、CD上的點(diǎn),且∠EAF=BAD.求證:EF=BE+FD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=﹣x2+bx+c,當(dāng)2<x<5時(shí),y隨x的增大而減小,則實(shí)數(shù)b的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,直線AB、CD相交于點(diǎn)O,OEOC,OF平分∠AOE.

1)若,則∠AOF的度數(shù)為______;

2)若,求∠BOC的度數(shù)。

查看答案和解析>>

同步練習(xí)冊(cè)答案