12、如圖,要測量河兩岸相對的兩點A,B的距離,在AB的垂線BF上取兩點C,D,使BC=CD,再定出BF的垂線DE,使A,C,E在一條直線上,這時測得DE=16米,則AB=
16
米.
分析:由對頂角相等,兩個直角相等及BD=CD,可以判斷兩個三角形全等;所以AB=DE=16米.
解答:解:根據(jù)題意可知∠B=∠D=90°,BC=CD,∠ACB=∠ECD
∴△ABC≌△EDC
∴AB=DE=16米.
故填16
點評:解答本題的關鍵是設計三角形全等,巧妙地借助兩個三角形全等,尋找所求線段與已知線段之間的等量關系,做題時要認真觀察圖形,根據(jù)已知選擇方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

13、如圖,要測量河兩岸相對的兩點A、B間的距離,先從B處出發(fā),與AB成90°角方向,向前走50米到C處立一根標桿,然后方向不變繼續(xù)朝前走10米到D處,在D處沿垂直于BD的方向再走5米到達E處,使A(目標物),C(標桿)與E在同一直線上,則AB的長為
25
米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

94、如圖,要測量河兩岸相對的兩點A,B的距離,可以在AB的垂線BF上取兩點C,D,使CD=BC,再定出BF的垂線DE,使A,C,E在一條直線上,這時測得的DE的長就是AB的長,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

4、如圖,要測量河兩岸相對的兩點A、B間的距離,先在過B點的AB的垂線L上取兩點C、D,使CD=BC,再在過D點的垂線上取點E,使A、C、E在一條直線上,這時,△ACB≌△ECD,ED=AB,測ED的長就得AB得長,判定△ACB≌△ECD的理由是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,要測量河兩岸相對的兩點A,B的距離,在AB的垂線BF上取兩點C,D,使
BC=CD,再定出BF的垂線DE.使A,C,E在一條直線上,這時測得DE=16米,求AB長.

查看答案和解析>>

同步練習冊答案