如圖,矩形A′B′C′O′是矩形OABC(邊OA在x軸正半軸上,邊OC在y軸正半軸上)繞B點逆時針旋轉(zhuǎn)得到的,O′點在x軸的正半軸上,B點的坐標(biāo)為(1,3).O′C′與AB交于D點.
(1)如果二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過O,O′兩點且圖象頂點M的縱坐標(biāo)為-1,求這個二次函數(shù)的解析式;
(2)求D點的坐標(biāo);
(3)若將直線OC繞點O旋轉(zhuǎn)α度(0<α<90)后與拋物線的另一個交點為點P,則以O(shè)、O′、B、P為頂點的四邊形能否是平行四邊形?若能,求出tanα的值;若不能,請說明理由.

解:(1)因為B點坐標(biāo)為(1,3),
所以C點坐標(biāo)為(0,3),A點坐標(biāo)為(1,0),連接OB,O′B,
所以O(shè)A=1,AB=3;根據(jù)旋轉(zhuǎn)的性質(zhì)可知OB=O′B,
根據(jù)勾股定理,AO′=
====1,
則OO'=1+1=2,O'坐標(biāo)為(2,0),對稱軸為x==1,
又因為圖象頂點M的縱坐標(biāo)為-1,
∴M點坐標(biāo)為(1,-1).
設(shè)解析式為y=a(x-1)2-1,
把(0,0)代入解析式
得0=a-1.a(chǎn)=1,原式可化為y=x2-2x.

(2)因為∠C′=∠DAO',∠C'DB=∠ADO',BC=AO',
所以△C'DB≌△ADO',于是BD=O'D.
設(shè)AD=x,所以O(shè)'D=BD=3-x,在Rt△DAO'中,x2+1=(3-x)2,
解得x=,
所以D點的坐標(biāo)為(1,).

(3)如圖所示,延長CB、BC分別交拋物線于P1,P2.由于B點縱坐標(biāo)為3且BC平行于x軸,
故P1、P2縱坐標(biāo)為3,代入拋物線解析式,
得:x2-2x=3,
解得x1=3,x2=-1.
于是BP1=3-1=2,BP2=1-(-1)=2,
故BP1∥OO'且BP1=OO',BP2∥OO'且BP2=OO',
于是OO'P1B和OO'P2B均為平行四邊形.
則以O(shè)、O′、B、P為頂點的四邊形是平行四邊形,
tanα===1或tanα==
于是tanα=1或
分析:(1)因為B點坐標(biāo)為(1,3),所以C點坐標(biāo)為(0,3),A點坐標(biāo)為(1,0),連接OB,O′B,由勾股定理可求出OB的長,根據(jù)旋轉(zhuǎn)的性質(zhì)可知OB=O′B,由勾股定理可求出O′A即可求出O′點的坐標(biāo).因為二次函數(shù)的圖象過O,O′兩點,根據(jù)二次函數(shù)圖象上點的坐標(biāo)特點可求出對稱軸直線,可求出M點的坐標(biāo).再用待定系數(shù)法即可求出函數(shù)的解析式.
(2)由于Rt△BC′D≌Rt△O′AD,可知DO′=BD,設(shè)AD=x,則可表示出D利用勾股定理;
(3)假設(shè)以O(shè)、O′、B、P為頂點的四邊形是平行四邊形,作出圖形,求出P點坐標(biāo),再通過判斷BP1∥=OO',BP2∥=OO',得出四邊形是平行四邊形的結(jié)論.
點評:考查學(xué)生的對存在問題和動點問題的思考方法及數(shù)學(xué)思想的考查.要注意結(jié)合圖形,分情況討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,E、F、G、H分別是AD、AB、BC、CD的中點,連接EFGH,四邊形EFGH是什么四邊形?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD的長為8cm,寬為6cm,O是對稱中心,則圖中陰影部分的面積是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,對角線AC=8cm,△AOB是等邊三角形,則AD的長為
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,矩形ABCD被分割成六個正方形,其中最小正方形的面積等于1,則矩形ABCD的面積等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖大矩形的長10cm,寬8cm,陰影部分的寬2cm,則空白部分的面積是
 
cm2

查看答案和解析>>

同步練習(xí)冊答案