作業(yè)寶如圖,拋物線經(jīng)過(guò)A,C,D三點(diǎn),且三點(diǎn)坐標(biāo)為A(-1,0),C(0,5),D(2,5),拋物線與x軸的另一個(gè)交點(diǎn)為B點(diǎn),點(diǎn)F為y軸上一動(dòng)點(diǎn),作平行四邊形DFBG,
(1)B點(diǎn)的坐標(biāo)為_(kāi)_____;
(2)是否存在F點(diǎn),使四邊形DFBG為矩形?如存在,求出F點(diǎn)坐標(biāo);如不存在,說(shuō)明理由;
(3)連結(jié)FG,F(xiàn)G的長(zhǎng)度是否存在最小值?如存在求出最小值;若不存在說(shuō)明理由;
(4)若E為AB中點(diǎn),找出拋物線上滿足到E點(diǎn)的距離小于2的所有點(diǎn)的橫坐標(biāo)x的范圍:______.

解:(1)∵C(0,5),D(2,5),
∴拋物線的對(duì)稱軸為直線x==1,
∵A(-1,0),
∴2×1-(-1)=3,
∴點(diǎn)B的坐標(biāo)為(3,0);

(2)如圖,連接CD,則∠DCF=90°,
∵四邊形DFBG為矩形,
∴∠DFC+∠OFB=180°-90°=90°,
∵∠OFB+∠OBF=90°,
∴∠DFC=∠OBF,
又∵∠DCF=∠FOB=90°,
∴△CDF∽△OFB,
=,
∵B(3,0),C(0,5),D(2,5),
∴CD=2,OB=3,OC=5,
∴CF=5-OF,
=,
整理得,OF2-5OF+6=0,
解得OF=2或OF=3,
∴點(diǎn)F的坐標(biāo)為(0,2)或(0,3);

(3)連接BD,設(shè)FG、BD相交于點(diǎn)H,
∵四邊形DFBG是平行四邊形,
∴FG、BD互相平分,
∴FG=2FH,
又∵B(3,0),D(2,5),
∴點(diǎn)H的坐標(biāo)為(2.5,2.5),
根據(jù)垂線段最短,F(xiàn)H⊥y軸時(shí),F(xiàn)H最短,
此時(shí),F(xiàn)H=2.5,
FG=2FH=2×2.5=5;

(4)設(shè)拋物線解析式為y=a(x-1)2+k(a≠0),
把點(diǎn)A、C的坐標(biāo)代入得,,
解得
∴拋物線解析式為y=-(x-1)2+,
∵E為AB中點(diǎn),
∴點(diǎn)E的坐標(biāo)為(1,0),
∴以E為圓心,以2為半徑的圓為(x-1)2+y2=4,
與拋物線解析式聯(lián)立消掉(x-1)2得,-(4-y2)+=y,
整理得,5y2-3y=0,
解得y1=0,y2=,
y=時(shí),-(x-1)2+=,
整理得,(x-1)2=,
解得x1=,x2=,
∴-1<x<<x<3時(shí),拋物線上的點(diǎn)到E點(diǎn)的距離小于2.
故答案為:(1)(3,0);(4)-1<x<<x<3.
分析:(1)根據(jù)點(diǎn)C、D的縱坐標(biāo)相等求出拋物線的對(duì)稱軸,然后根據(jù)二次函數(shù)的對(duì)稱性求出點(diǎn)B的坐標(biāo)即可;
(2)連接CD,然后求出△CDF和△OFB相似,根據(jù)相似三角形對(duì)應(yīng)邊成比例列式求出OF,然后寫(xiě)出點(diǎn)F的坐標(biāo)即可;
(3)連接BD,設(shè)FG、BD相交于點(diǎn)H,根據(jù)平行四邊形的對(duì)角線互相平分可得FG=2FH,再求出點(diǎn)H的坐標(biāo),再根據(jù)垂線段最短可得FH⊥y軸時(shí),F(xiàn)H最短,從而求出FH,再求出FG即可;
(4)利用待定系數(shù)法求出函數(shù)解析式,再寫(xiě)出以點(diǎn)E為圓心,以2為半徑的圓的解析式,然后消掉x得到關(guān)于y的一元二次方程,求解得到y(tǒng)的值,再代入拋物線解析式求出到點(diǎn)E的距離等于2的橫坐標(biāo)x的值,然后根據(jù)函數(shù)圖象解答.
點(diǎn)評(píng):本題是二次函數(shù)綜合題型,主要利用了二次函數(shù)的對(duì)稱性,相似三角形的判定與性質(zhì),平行四邊形的對(duì)角線互相平分的性質(zhì),待定系數(shù)法求二次函數(shù)解析式,利用圓的解析式求出拋物線到點(diǎn)E的距離等于2的點(diǎn)的縱坐標(biāo)是解題的關(guān)鍵,也是本題的難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線經(jīng)過(guò)A(4,0),B(1,0),C(0,-2)三點(diǎn).
(1)求出拋物線的解析式;
(2)P是拋物線上一動(dòng)點(diǎn),過(guò)P作PM⊥x軸,垂足為M,是否存在P點(diǎn),使得以A,P,M為頂點(diǎn)的三角形與△OAC相似?若存在,請(qǐng)求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在直線AC上方的拋物線上有一點(diǎn)D,使得△DCA的面積最大,求出點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖:拋物線經(jīng)過(guò)A(-3,0)、B(0,4)、C(4,0)三點(diǎn),
(1)求拋物線的解析式;
(2)求該拋物線的頂點(diǎn)坐標(biāo)以及最值;
(3)已知AD=AB(D在線段AC上),有一動(dòng)點(diǎn)P從點(diǎn)A沿線段AC以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng);同時(shí)另一個(gè)動(dòng)點(diǎn)Q以某一速度從點(diǎn)B沿線段BC移動(dòng),經(jīng)過(guò)t秒的移動(dòng),線段PQ被BD垂直平分,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•蘇州一模)如圖,拋物線經(jīng)過(guò)A,C,D三點(diǎn),且三點(diǎn)坐標(biāo)為A(-1,0),C(0,5),D(2,5),拋物線與x軸的另一個(gè)交點(diǎn)為B點(diǎn),點(diǎn)F為y軸上一動(dòng)點(diǎn),作平行四邊形DFBG,
(1)B點(diǎn)的坐標(biāo)為
(3,0)
(3,0)

(2)是否存在F點(diǎn),使四邊形DFBG為矩形?如存在,求出F點(diǎn)坐標(biāo);如不存在,說(shuō)明理由;
(3)連結(jié)FG,F(xiàn)G的長(zhǎng)度是否存在最小值?如存在求出最小值;若不存在說(shuō)明理由;
(4)若E為AB中點(diǎn),找出拋物線上滿足到E點(diǎn)的距離小于2的所有點(diǎn)的橫坐標(biāo)x的范圍:
-1<x<
5-
91
5
5+
91
5
<x<3
-1<x<
5-
91
5
5+
91
5
<x<3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•高要市二模)已知:如圖,拋物線經(jīng)過(guò)點(diǎn)O、A、B三點(diǎn),四邊形OABC是直角梯形,其中點(diǎn)A在x軸上,點(diǎn)C在y軸上,BC∥OA,A(12,0)、B(4,8).
(1)求拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)D為OA的中點(diǎn),動(dòng)點(diǎn)P自A點(diǎn)出發(fā)沿A→B→C→O的路線移動(dòng),若線段PD將梯形OABC的面積分成1﹕3兩部分,求此時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線經(jīng)過(guò)A(-2,0)、B(8,0)兩點(diǎn),與y軸正半軸交與點(diǎn)C,且AB=BC,點(diǎn)P為第一象限內(nèi)拋物線上一動(dòng)點(diǎn)(不與B、C重合),設(shè)點(diǎn)P的坐標(biāo)為(m,n).
(1)求拋物線的解析式;
(2)點(diǎn)D在BC上,且PD∥y軸,探索
BD•DCPD
的值;
(3)設(shè)拋物線的對(duì)稱軸為l,若以點(diǎn)P為圓心的⊙P與直線BC相切,請(qǐng)寫(xiě)出⊙P的半徑R關(guān)于m函數(shù)關(guān)系式,并判斷⊙P與直線l的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案