【題目】一只不透明的袋子中裝有個大小、質地都相同的乒乓球,球面上分別標有數(shù)字、、,攪勻后先從中摸出一個球(不放回),再從余下的個球中摸出個球.

(1)用樹狀圖列出所有可能出現(xiàn)的結果;

(2)次摸出的乒乓球球面上數(shù)字的積為偶數(shù)的概率.

【答案】1)畫圖見解析; (2

【解析】

試題(1)依據(jù)題意先用列表法或畫樹狀圖法分析所有可能,即可得出答案;

2)利用所有結果與所有符合要求的總數(shù),然后根據(jù)概率公式求出該事件的概率.

試題解析:(1)根據(jù)題意畫樹形圖如右圖:

由圖可知共有12種可能結果,分別為:

(1,-2),(1,3),(1,-4),(-21),(-23),(-2-4),(3,1),(3-2),(3-4),(-4,1)(-4,-2),(-4,3);

(2)(1)中的12種可能結果中,兩個數(shù)字之積為偶數(shù)的只有10種,P(積為偶數(shù))

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB 為半⊙O 的直徑,弦 AC 的延長線與過點 B 的切線交于點 D,E BD的中點,連接 CE.

(1)求證:CE O 的切線;

(2)過點 C CF AB ,垂足為點 F,AC=5,CF=3,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖14,在直角邊分別為34的直角三角形中,每多作一條斜邊上的高就增加一個三角形的內(nèi)切圓,依此類推,圖10中有10個直角三角形的內(nèi)切圓,它們的面積分別記為S1,S2,S3,S10,則S1+S2+S3+…+S10=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OA,OB是⊙O的兩條半徑,OA⊥OB,C是半徑OB上一動點,連結AC并延長交⊙O于D,過點D作圓的切線交OB的延長線于E,已知OA=8.

(1)求證:∠ECD=∠EDC;

(2)若tanA=,求DE長;

(3)當∠A從15°增大到30°的過程中,求弦AD在圓內(nèi)掃過的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形ABCD和正方形EFGC面積分別為6416

1)請寫出點A,E,F的坐標;

2)求SBDF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】田忌賽馬是一個為人熟知的故事.傳說戰(zhàn)國時期,齊王與田忌各有上、中、下三匹馬,同等級的馬中,齊王的馬比田忌的馬強.有一天,齊王要與田忌賽馬,雙方約定:比賽三局,每局各出-匹,每匹馬賽一次,贏得兩局者為勝.看樣子田忌似乎沒有什么勝的希望,但是田忌的謀士了解到主人的上、中等馬分別比齊王的中、下等馬要強.

(1)如果齊王將馬按下中上的順序出陣比賽,那么田忌的馬如何出陣才能獲勝?

(2)如果齊王將馬按下中上的順序出陣,而田忌的馬隨機出陣比賽,田忌獲勝的概率是多少?(要求寫出雙方對陣的所有情況)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店一周內(nèi)甲、乙兩種計算器每天的銷售量如下(單位:個):

類別/星期

平均數(shù)

(1)將表格填寫完整.

(2)求甲種計算器本周銷售量的方差.

(3)已知乙種計算器本周銷售量的方差為,本周哪種計算器的銷售量比較穩(wěn)定?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),在Rt△ABC中,A=90°,AC=AB=4,D,E分別是AB,AC的中點.若等腰Rt△ADE繞點A逆時針旋轉,得到等腰Rt△AD1E1,如圖(2),設旋轉角為α(0<α≤180°),記直線BD1與CE1的交點為P.

(1)求證:BD1=CE1;(2)當∠CPD1=2∠CAD1時,求CE1的長;

(3)連接PA,PAB面積的最大值為  .(直接填寫結果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某飲料廠開發(fā)了A、B兩種新型飲料,主要原料均為甲和乙,每瓶飲料中甲、乙的含量如下表所示.現(xiàn)用甲原料和乙原料各2800克進行試生產(chǎn),計劃生產(chǎn)A、B兩種飲料共100瓶.設生產(chǎn)A種飲料x瓶,解析下列問題:

原料名稱 飲料名稱

A

20克

40克

B

30克

20克

(1)有幾種符合題意的生產(chǎn)方案寫出解析過程;

(2)如果A種飲料每瓶的成本為2.60元,B種飲料每瓶的成本為2.80元,這兩種飲料成本總額為y元,請寫出y與x之間的關系式,并說明x取何值會使成本總額最低?

查看答案和解析>>

同步練習冊答案