如圖,在□ABCD中,延長CD到E,使DE=CD,連接BE交AD于點(diǎn)F,交AC于點(diǎn)G。
(1)求證:AF=DF;
(2)若BC=2AB,DE=1,∠ABC=60°,求FG的長。
【考點(diǎn)】平行四邊形的性質(zhì);全等三角形的判定與性質(zhì);三角形中位線定理;平行線分線段成比例.
【專題】證明題.
【分析】(1)連接AE、BD、根據(jù)AB∥CD,AB=CD=DE,得出平行四邊形ABDE,即可推出答案;
(2)在BC上截取BN=AB=1,連接AN,推出△ANB是等邊三角形,求出CN=1=AN,根據(jù)三角形的內(nèi)角和定理求出∠BAC=90°,由勾股定理求出AC,根據(jù)△AGB∽△CGE,得出==,求出AG,在△BGA中,由勾股定理求出BG,求出GE、BE,根據(jù)□BDEA求出BF,即可求出答案.
【解答】(1)證明:連接BD、AE,(如圖1)
∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD,
∵DE=CD,
∴AB∥DE,AB=DE,
∴四邊形ABDE是平行四邊形,
∴AF=DF.
(2)解:在BC上截取BN=AB=1,連接AN,(如圖2)
∵∠ABC=60°,
∴△ANB是等邊三角形,
∴AN=1=BN,∠ANB=∠BAN=60°,
∵BC=2AB=2,
∴CN=1=AN,
∴∠ACN=∠CAN=×60°=30°,
∴∠BAC=90°,
由勾股定理得:AC==,
∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∴△AGB∽△CGE,
∴==,
∴=,AG=,
在△BGA中,由勾股定理得:BG==,
∵=,
∴GE=,BE=+=2,
∵四邊形ABDE是平行四邊形,
∴BF=BE=,
∴FG=-=.
【點(diǎn)評】本題考查了相似三角形的性質(zhì)和判定,平行四邊形的性質(zhì)和判定,勾股定理等,主要考查學(xué)生綜合運(yùn)用定理進(jìn)行推理和計(jì)算的能力,題目比較好,綜合性比較強(qiáng).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
13 |
13 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com