【題目】如圖,在中,,的平分線交于點(diǎn),得;的平分線交于點(diǎn),得;…;的平分線交于點(diǎn),則 =___________.

【答案】

【解析】

利用角平分線的性質(zhì)、三角形外角性質(zhì),易證∠A1=∠A,進(jìn)而可求∠A1,由于∠A1=∠A,∠A2=∠A1=∠A,…,以此類推可知∠A2018即可求得.

∵A1B平分∠ABC,A1C平分∠ACD,
∴∠A1BC=∠ABC,∠A1CA=∠ACD,
∵∠A1CD=∠A1+∠A1BC,
∠ACD=∠A1+∠ABC,
∴∠A1=(∠ACD-∠ABC),
∵∠A+∠ABC=∠ACD,
∴∠A=∠ACD-∠ABC,
∴∠A1=∠A,

以此類推∠A2=∠A1, ∠A3=∠A2,……∠An=∠An-1,

所以∠An=,

所以.

故答案是:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC△ECD都是等邊三角形

(1)如圖1,若B、C、D三點(diǎn)在一條直線上,求證:BE=AD;

(2)保持△ABC不動(dòng),將△ECD繞點(diǎn)C順時(shí)針旋轉(zhuǎn),使∠ACE=90°(如圖2),BCDE有怎樣的位置關(guān)系?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,對(duì)稱軸是x=1,有以下四個(gè)結(jié)論:
①abc>0;②b2﹣4ac>0;③b=﹣2a;④a+b+c>2,
其中正確的是(填寫序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題與探索
問(wèn)題情境:課堂上,老師讓同學(xué)們以“菱形紙片的剪拼”為主題開(kāi)展數(shù)學(xué)活動(dòng).如圖(1),將一張菱形紙片ABCD(∠BAD>90°)沿對(duì)角線AC剪開(kāi),得到△ABC和△ACD.
操作發(fā)現(xiàn):
(1)將圖(1)中的△ACD以點(diǎn)A為旋轉(zhuǎn)中心,按逆時(shí)針?lè)较蛐D(zhuǎn)角α,使α=∠BAC,得到如圖(2)所示的△AC′D,分別延長(zhǎng)BC和DC′交于點(diǎn)E,則四邊形ACEC′的形狀是

(2)創(chuàng)新小組將圖(1)中的△ACD以點(diǎn)A為旋轉(zhuǎn)中心,按逆時(shí)針?lè)较蛐D(zhuǎn)角α,使α=2∠BAC,得到如圖(3)所示的△AC′D,連接DB、C′C,得到四邊形BCC′D,發(fā)現(xiàn)它是矩形,請(qǐng)證明這個(gè)結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形在建立平面直角坐標(biāo)系后,ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為4,-1).

1請(qǐng)以y軸為對(duì)稱軸,畫出與△ABC對(duì)稱的△A1B1C1,并直接寫出點(diǎn)A1、B1、C1的坐標(biāo);

2ABC的面積是

3點(diǎn)Pa+1,b-1與點(diǎn)C關(guān)于x軸對(duì)稱a= ,b=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,AB=AC=12cm,且,BC=10cm,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以2cm/s的速度由點(diǎn)B向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段AC上由點(diǎn)A向C點(diǎn)以4cm/s的速度運(yùn)動(dòng).

(1)若點(diǎn)P、Q兩點(diǎn)分別從B、A兩點(diǎn)同時(shí)出發(fā),經(jīng)過(guò)2秒后,△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由;

(2)若點(diǎn)P、Q兩點(diǎn)分別從B、A兩點(diǎn)同時(shí)出發(fā),△CPQ的周長(zhǎng)為18cm,問(wèn):經(jīng)過(guò)幾秒后,△CPQ是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)n度后,得到△DEC,點(diǎn)D剛好落在AB邊上.

(1)求n的值;
(2)若F是DE的中點(diǎn),判斷四邊形ACFD的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖甲所示,已知AEAB,AFAC,AE=AB,AF=AC. BFCE相交于點(diǎn)M

(1)求證:①△ACE≌△AFB;ECBF.

(2)如圖乙連接EF,畫出ABCBC上的高線AD,延長(zhǎng)DAEF于點(diǎn)N,其他條件不變,下列四個(gè)結(jié)論:①∠EAN=ABC;

②△AEN≌△BAD;;EN=FN。

正確的結(jié)論是____________(把正確結(jié)論的序號(hào)全部填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)邊長(zhǎng)為1的等邊△ABC的邊AB上一點(diǎn)P,作PE⊥AC于E,Q為BC延長(zhǎng)線上一點(diǎn),當(dāng)PA=CQ時(shí),連PQ交AC邊于D,則DE的長(zhǎng)為( )

A. B. C. D. 不能確定

查看答案和解析>>

同步練習(xí)冊(cè)答案