精英家教網 > 初中數學 > 題目詳情
8.若|3-x-y|+(4x+3y-8)2=0,求多項式$\frac{1}{2}$x-2(x-$\frac{1}{4}$y2)+(-$\frac{3}{2}$x+$\frac{1}{4}$y2)的值.

分析 根據已知等式,利用非負數的性質求出x與y的值,原式去括號合并得到最簡結果,將x與y的值帶入計算即可得到結果.

解答 解:∵|3-x-y|+(4x+3y-8)2=0,
∴$\left\{\begin{array}{l}{x+y=3①}\\{4x+3y=8②}\end{array}\right.$,
①×4-②得:y=4,
把y=4代入①得:x=-1,
則原式=$\frac{1}{2}$x-2x+$\frac{1}{2}$y2-$\frac{3}{2}$x+$\frac{1}{4}$y2=-3x+$\frac{3}{4}$y2=3+12=15.

點評 此題考查了整式的加減-化簡求值,以及非負數的性質,熟練掌握運算法則是解本題的關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:解答題

18.計算
(1)$\sqrt{4}$-$\sqrt{(-3)^{2}}$+$\root{3}{-8}$-|-$\sqrt{36}$|
(2)解方程:(x+2)2=25.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

19.已知:如圖,在Rt△ABC中,∠ACB=90°,AC=15,BC=20,CD⊥AB,垂足為D,點E是點D關于AC的對稱點,連接AE,CE.

(1)求CD和AD的長;
(2)若將△ACE沿著射線AB方向平移,設平移的距離為m(平移距離指點A沿AB方向所經過的線段長度),當點E平移到線段AC上時,求m的值;
(3)如下圖,將△ACE繞點A順時針旋轉-個角α(0°<α<180°),記旋轉中的△ACE為△AC′E′,在旋轉過程中,設C′E′所在的直線與直線BC交于點P,與直線AB交于點Q,若存在這樣的P,Q兩點,使△BPQ為等腰三角形,直接寫出此時AQ的長,若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

16.如圖,在△ABC中,點D、E分別在邊AB、AC,下列條件中不能判斷△ABC∽△AED的是(注意對應點)( 。
A.∠AED=∠BB.∠ADE=∠CC.$\frac{AD}{AE}$=$\frac{AC}{AB}$D.$\frac{AD}{AB}$=$\frac{AE}{AC}$

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

3.已知點A(2,2),B(1,0),點C在坐標軸上,且三角形ABC的面積為2,請寫出所有滿足條件的點C的坐標:(3,0),(-1,0),(0,2),(0,-6).

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

13.如圖,在菱形ABCD中,AB=6,∠ABC=60°,動點E、F同時從頂點B出發(fā),其中點E從點B向點A以每秒1個單位的速度運動,點F從點B出發(fā)沿B-C-A的路線向終點A以每秒2個單位的速度運動,以EF為邊向上(或向右)作等邊三角形EFG,AH是△ABC中BC邊上的高,兩點運動時間為t秒,△EFG和△AHC的重合部分面積為S.
(1)用含t的代數式表示線段CF的長;
(2)求點G落在AC上時t的值;
(3)求S關于t的函數關系式;
(4)動點P在點E、F出發(fā)的同時從點A出發(fā)沿A-H-A以每秒2$\sqrt{3}$單位的速度作循環(huán)往復運動,當點E、F到達終點時,點P隨之運動,直接寫出點P在△EFG內部時t的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

20.請你參與下面探究過程,完成所提出的問題.
(1)探究1:如圖1,P是△ABC的內角∠ABC與∠ACB的平分線BP和CP的交點,若∠A=70°,則∠BPC=125度;
(2)探究2:如圖2,P是△ABC的外角∠DBC與外角∠ECB的平分線BP和CP的交點,求∠BPC與∠A的數量關系?并說明理由.
(3)拓展:如圖3,P是四邊形ABCD的外角∠EBC與∠BCF的平分線BP和CP的交點,設∠A+∠D=α.
①直接寫出∠BPC與α的數量關系;
②根據α的值的情況,判斷△BPC的形狀(按角分類).

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

17.已知x2m+ny與x7ym-2n是同類項,則n=1.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

18.我區(qū)“聯(lián)華”超市購進一批20元/千克的綠色食品,如果以30元/千克銷售,那么每天可售出400千克.由銷售經驗知,每天銷售量y(千克)與銷售單價x(元)(x≥30)存在如圖所示的一次函數關系.
(1)試求出y與x的函數關系式;
(2)設超市銷售該綠色食品每天獲得利潤p元,當銷售單價為何值時,每天可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

同步練習冊答案