【題目】如圖所示,ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣1,3)、B(﹣2,﹣2)、C(4,﹣2),則ABC外接圓半徑的長(zhǎng)度為_____

【答案】

【解析】

根據(jù)三角形的外心是三邊中垂線的交點(diǎn),由B、C的坐標(biāo)可知,圓心M必在直線x=1上;由圖知:AC的垂直平分線正好經(jīng)過(1,0),由此可得到M(1,0);連接MB,過MMD⊥BCD,由勾股定理即可求得 M的半徑長(zhǎng).

設(shè)△ABC的外心為M;

∵B(2,2),C(4,2),

∴M必在直線x=1上,

由圖知:AC的垂直平分線過(1,0),

M(1,0);

MMD⊥BCD,連接MB,

Rt△MBD中,MD=2,BD=3,

由勾股定理得:MB==,

即△ABC的外接圓半徑為.

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,PBC的中點(diǎn),把△PAB沿著PA翻折得到△PAE,過CCF⊥DEF,若CF=2,則DF=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知A(,y1),B(2,y2)為反比例函數(shù)圖像上的兩點(diǎn),動(dòng)點(diǎn)P(x,0)x正半軸上運(yùn)動(dòng),當(dāng)線段AP與線段BP之差達(dá)到最大時(shí),點(diǎn)P的坐標(biāo)是(

A. (,0) B. (1,0) C. (,0) D. (,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】施工隊(duì)要修建一個(gè)橫斷面為拋物線的公路隧道,其高度為6米,寬度OM12米,現(xiàn)在O點(diǎn)為原點(diǎn),OM所在直線為x軸建立直角坐標(biāo)系(如圖所示).

1)直接寫出點(diǎn)M及拋物線頂點(diǎn)P的坐標(biāo);

2)求出這條拋物線的函數(shù)解析式;

3)施工隊(duì)計(jì)劃在隧道門口搭建一個(gè)矩形腳手架”ABCD,使A、D點(diǎn)在拋物線上,B、C點(diǎn)在地面OM上.為了籌備材料,需求出腳手架三根木桿AB、AD、DC的長(zhǎng)度之和的最大值是多少?請(qǐng)你幫施工隊(duì)計(jì)算一下.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用同角的余角相等可以幫助我們得到相等的角,這個(gè)規(guī)律在全等三角形的判定中有著廣泛的運(yùn)用.

1)如圖①,,,三點(diǎn)共線,于點(diǎn),于點(diǎn),,且.若,求的長(zhǎng).

2)如圖②,在平面直角坐標(biāo)系中,為等腰直角三角形,直角頂點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為.求直線軸的交點(diǎn)坐標(biāo).

3)如圖③,,平分,若點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為.則 .(只需寫出結(jié)果,用含,的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過平行四邊形ABCD對(duì)角線交點(diǎn)O的直線交ADE,交BCF,若AB=5,BC=6OE=2,那么四邊形EFCD周長(zhǎng)是( 。

A. 16B. 15C. 14D. 13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E、F、 G、H分別為四邊形ABCD四邊之中點(diǎn).

(1)求證:四邊形EFGH為平行四邊形;

(2)當(dāng)AC、BD滿足______時(shí),四邊形EFGH為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtAOB中,∠AOB=90°,OA=2,OB=1,將RtAOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得到RtFOE,將線段EF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°后得到線段ED,分別以O、E為圓心,OA、ED長(zhǎng)為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分的面積是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題發(fā)現(xiàn)

如圖1,在Rt△ABC中,∠A=90°,=1,點(diǎn)P是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=90°,∠APD=∠B,連接 CD.

(1)①求的值;②求∠ACD的度數(shù).

(2)拓展探究

如圖 2,在Rt△ABC中,∠A=90°,=k.點(diǎn)P是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=90°,∠APD=∠B,連接CD,請(qǐng)判斷∠ACD與∠B 的數(shù)量關(guān)系以及PB與CD之間的數(shù)量關(guān)系,并說明理由.

(3)解決問題

如圖 3,在△ABC中,∠B=45°,AB=4,BC=12,P 是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=∠BAC,∠APD=∠B,連接CD.若 PA=5,請(qǐng)直接寫出CD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案