【題目】如圖,已知反比例函數(shù)的圖象經(jīng)過點,若在該圖象上有一點,使得,則點的坐標(biāo)是_______.

【答案】

【解析】

AEy軸于E,將線段OA繞點O順時針旋轉(zhuǎn)90°得到OA′,作A′Fx軸于F,則△AOE≌△A′OF,可得OF=OE=4,A′F=AE=3,即A′4,-3),求出線段AA′的中垂線的解析式,利用方程組確定交點坐標(biāo)即可.

解:如圖,作AE⊥y軸于E,將線段OA繞點O順時針旋轉(zhuǎn)90°得到OA′,作A′F⊥x軸于F,則△AOE≌△A′OF,可得OF=OE=5,A′F=AE=4,即A′5,-4).

反比例函數(shù)的圖象經(jīng)過點A4,5),

所以由勾股定理可知:OA=,

∴k=4×5=20,

∴y=,

∴AA′的中點K),

直線OK的解析式為y=x

,

解得,

P在第一象限,

∴P),

故答案為().

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對點(x,y)的一次操作變換記為p1(x,y),定義其變換法則如下:p1(x,y)=(x+y,x-y);且規(guī)定Pn(x,y)=P1(Pn-1(x,y))(n為大于1的整數(shù))例如:p1(1,2)=(3,-1),p2(1,2)=p1(p1(1,2))=p1(3,-1)=(2,4),p3(1,2)=p1(p2(1,2))=p1(2,4)=(6,-2)則p2014(1,-1)=

A.(0,21006 B(21007-21007 C(0,-21006 D(21006,-21006

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖若要建一個長方形雞場,雞場一邊靠墻,墻長17m,墻對面有一個2m寬的門,另三邊用33m的竹籬笆圍成。

(1)要圍成150平方米,則雞場該如何修?

(2)求出能圍成的最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:O是直線AB上的一點,是直角,OE平分

(1)如圖1.若.求的度數(shù);

(2)在圖1中,,直接寫出的度數(shù)(用含a的代數(shù)式表示);

(3)將圖1中的繞頂點O順時針旋轉(zhuǎn)至圖2的位置,探究的度數(shù)之間的關(guān)系.寫出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點,在反比例函數(shù)的圖象上,連結(jié),,以,為邊作,若點恰好落在反比例函數(shù)的圖象上,此時的面積是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,點A、B、Cx軸上,點D、Ey軸上,OA=OD=2,OC=OE=4,B為線段OA的中點,直線AD與經(jīng)過B、E、C三點的拋物線交于F、G兩點,與其對稱軸交于M.

(1)求經(jīng)過B、E、C三點的拋物線的解析式;

(2)若點P線段FG上一個動點(與F、G不重合),當(dāng)P在什么位置時,以P、O、C為頂點的三角形是等腰三角形,請求出此時點P的坐標(biāo);

(3)若點P直線FG上一個動點,Q為拋物線上任一點,拋物線的頂點為N,探究以P、Q、M、N為頂點的四邊形能否成為平行四邊形?若能,請直接寫出點P的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一直角三角形紙片ABC,∠C=90°,∠B=30°,將該直角三角形紙片沿DE折疊,使點B與點A重合,DE=1,則BC的長度為( )

A. 2 B. +2 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近些年全國各地頻發(fā)霧霾天氣,給人民群眾的身體健康帶來了危害,某商場看到商機后決定購進(jìn)甲、乙兩種空氣凈化器進(jìn)行銷售.若每臺甲種空氣凈化器的進(jìn)價比每臺乙種空氣凈化器的進(jìn)價少300元,且用6000元購進(jìn)甲種空氣凈化器的數(shù)量與用7500元購進(jìn)乙種空氣凈化器的數(shù)量相同.

1)求每臺甲種空氣凈化器、每臺乙種空氣凈化器的進(jìn)價分別為多少元?

2)若該商場準(zhǔn)備進(jìn)貨甲、乙兩種空氣凈化器共30臺,且進(jìn)貨花費不超過42000元,問最少進(jìn)貨甲種空氣凈化器多少臺?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲、乙兩座建筑物的水平距離BC78m,從甲的頂部A處測得乙的頂部D處的俯角為48°,測得底部C處的俯角為58°,求乙建筑物的高度CD.(結(jié)果取整數(shù),參考數(shù)據(jù):tan58°≈1.60,tan48°≈1.11).

查看答案和解析>>

同步練習(xí)冊答案