【題目】已知二次函數(shù)y=x2﹣2x﹣3,點(diǎn)P在該函數(shù)的圖象上,點(diǎn)P到x軸、y軸的距離分別為d1、d2 . 設(shè)d=d1+d2 , 下列結(jié)論中:
①d沒有最大值;
②d沒有最小值;
③﹣1<x<3時(shí),d隨x的增大而增大;
④滿足d=5的點(diǎn)P有四個(gè).
其中正確結(jié)論的個(gè)數(shù)有(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

【答案】B
【解析】解:令二次函數(shù)y=x2﹣2x﹣3中y=0,即x2﹣2x﹣3=0,
解得:x1=﹣1,x2=3.
(i)當(dāng)x≤﹣1時(shí),d1=x2﹣2x﹣3,d2=﹣x,
d=d1+d2=x2﹣3x﹣3=
d≥1;
(ii)當(dāng)﹣1<x≤0時(shí),d1=﹣x2+2x+3,d2=﹣x,
d=﹣x2+x+3=﹣
1<x≤3;
(iii)當(dāng)0<x≤3時(shí),d1=﹣x2+2x+3,d2=x,
d=﹣x2+3x+3=﹣ + ,
3≤x≤ ;
(iv)當(dāng)3<x時(shí),d1=x2﹣2x﹣3,d2=x,
d=d1+d2=x2﹣x﹣3=
3<d.
綜上可知:d有最小值,沒有最大值,即①成立,②不成了;
當(dāng)0<x≤ 時(shí),d單調(diào)遞增, <x≤3時(shí),d單調(diào)遞減,
∴﹣1<x<3時(shí),d隨x的增大而增大,此結(jié)論不成了;
令d=5,(i)中存在一個(gè)解;(ii)中無解;(iii)中有兩個(gè)解;(iv)中一個(gè)解.
∴滿足d=5的點(diǎn)P有四個(gè),該結(jié)論成立.
∴正確的結(jié)論有2個(gè).
故選B.
找出二次函數(shù)與x軸的交點(diǎn),結(jié)合點(diǎn)P所在的象限分段考慮,再根據(jù)二次函數(shù)的性質(zhì)找出其最值以及在各段區(qū)間內(nèi)的單調(diào)性,對比4個(gè)結(jié)論即可得知正確的結(jié)論有兩個(gè).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與x軸交于A(x1 , 0)、B(x2 , 0)兩點(diǎn),且x1<x2 , 與y軸交于點(diǎn)C(0,﹣4),其中x1 , x2是方程x2﹣4x﹣12=0的兩個(gè)根.

(1)求拋物線的解析式;
(2)點(diǎn)M是線段AB上的一個(gè)動(dòng)點(diǎn),過點(diǎn)M作MN∥BC,交AC于點(diǎn)N,連接CM,當(dāng)△CMN的面積最大時(shí),求點(diǎn)M的坐標(biāo);
(3)點(diǎn)D(4,k)在(1)中拋物線上,點(diǎn)E為拋物線上一動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使以A、D、E、F為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的點(diǎn)F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 y=ax2+bx+ca≠0)經(jīng)過點(diǎn)A(-3,0)、B(1,0)、C(-2,1),交y軸于點(diǎn)M.
(1)求拋物線的表達(dá)式;
(2)D為拋物線在第二象限部分上的一點(diǎn),作DE垂直x軸于點(diǎn)E,交線段AM于點(diǎn)F,求線段DF長度的最大值,并求此時(shí)點(diǎn)D的坐標(biāo);
(3)拋物線上是否存在一點(diǎn)P,作PN垂直x軸于點(diǎn)N,使得以點(diǎn)P、A.N為頂點(diǎn)的三角形與△MAO相似?若存在,求點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖①,在Rt△ACB中,∠ACB=90°,AC=3,BC=4,點(diǎn)P為線段BC上的一動(dòng)點(diǎn)(不運(yùn)動(dòng)到C,B兩點(diǎn))過點(diǎn)P作PQ⊥BC交AB于點(diǎn)Q,在AC邊上取一點(diǎn)D,使QD=QP,連結(jié)DP,設(shè)CP=x

(1)求QP的長,用含x的代數(shù)式表示.
(2)當(dāng)x為何值時(shí),△DPQ為直角三角形?
(3)記點(diǎn)D關(guān)于直線PQ的對稱點(diǎn)為點(diǎn)D′.
①當(dāng)點(diǎn)D′落在AB邊上時(shí),求x的值;
②在①的條件下,如圖②,將此時(shí)的△DPQ繞點(diǎn)P順時(shí)針旋轉(zhuǎn)一個(gè)角度α(0°<α<∠DPB),在旋轉(zhuǎn)過程中,設(shè)DP所在的直線與直線AB交于點(diǎn)M,與直線AC交于點(diǎn)N,是否存在這樣的M,N兩點(diǎn),使△AMN為等腰三角形?若存在,求出此時(shí)AN的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,對角線AC,BD并于點(diǎn)O,經(jīng)過點(diǎn)O的直線交AB于E,交CD于F.

(1)求證:OE=OF.
(2)連接DE,BF,則EF與BD滿足什么條件時(shí),四邊形DEBF是矩形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知E、F分別是ABCD的邊BC、AD上的點(diǎn),且BE=DF.

(1)求證:四邊形AECF是平行四邊形;
(2)若四邊形AECF是菱形,且BC=10,∠BAC=90°,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系xOy中,A(﹣4,0),B(0,2),連結(jié)AB并延長到C,連結(jié)CO,若△COB∽△CAO,則點(diǎn)C的坐標(biāo)為(

A.(1,
B.( ,
C.( ,2
D.( ,2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F為對角線AC上兩點(diǎn),且AE=CF,請你從圖中找出一對全等三角形,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=45°,AB的垂直平分線交AB于點(diǎn)E,交BC于點(diǎn)D;AC的垂直平分線交AC于點(diǎn)G,交BC與點(diǎn)F,連接AD、AF,若AC=3 ,BC=9,則DF等于(

A.
B.
C.4
D.3

查看答案和解析>>

同步練習(xí)冊答案