(1998•江西)如圖,已知AB切⊙O于點(diǎn)B,AB的垂直平分線CF交AB于點(diǎn)C,交⊙O于D、E.設(shè)點(diǎn)M是射線CF上的任意一點(diǎn),CM=a,連接AM,若CB=3,DE=8.
(1)求CD的長(zhǎng);
(2)當(dāng)M在線段DE(不含端點(diǎn)E)上時(shí),延長(zhǎng)AM交⊙O于點(diǎn)N,連接NE,若△ACM∽△NEM,求證:EN=AB;
(3)當(dāng)M在射線EF上時(shí),若a為小于17的正數(shù),問(wèn)是否存在這樣的a,使得AM與⊙O相切?若存在,求出a的值;若不存在,試說(shuō)明理由.
分析:(1)首先過(guò)點(diǎn)O作OG⊥DE,垂足G,連接OB,OD,由垂徑定理可得DG的長(zhǎng),又由AB切⊙O于點(diǎn)B,易得四邊形BCGO是矩形,然后在Rt△ODG中,利用勾股定理,即可求得⊙O的半徑長(zhǎng),繼而求得CD的長(zhǎng);
(2)由△ACM∽△NEM,易得NE∥AB,然后連接OB并反向延長(zhǎng)交NE于H,易證得NH=EH=
1
2
EN,四邊形BCHE為矩形,繼而可得BC=CA=
1
2
AB,則可證得:EN=AB;
(3)首先設(shè)AM切⊙O于點(diǎn)R,RM=x,EM=y,由切割線定理,可得RM2=EM•DM,即 x2=y(y+8)①,由勾股定理可得在Rt△ACM中,AM2=AC2+CM2,即(6+x)2=9+(9+y)2②,聯(lián)立①②,即可求得EM的長(zhǎng),繼而求得答案.
解答:解:(1)過(guò)點(diǎn)O作OG⊥DE,垂足G,連接OB,OD,
∵DE=8,
∴DG=GE=
1
2
DE=4,
∵AB切⊙O于點(diǎn)B,
∴OB⊥AB,
∵DE⊥AB,
∴四邊形BCGO是矩形,
∴OG=CB=3,CG=OB,
∴在Rt△ODG中,r=OD=
OG2+DG2
=5,
∴CG=OB=5,
∴CD=CG-DG=5-4=1;

(2)∵△ACM∽△NEM,
∴∠NEM=90°,
∴NE∥AB,
連接OB并反向延長(zhǎng)交NE于H,
∴∠OHE=180°-∠ABO=90°,
∴NH=EH=
1
2
EN,
∵∠OHE=∠NEM=∠ACM=∠BCM=90°,
∴四邊形BCHE為矩形,
∴BC=EH,
又∵BC=CA=
1
2
AB,
∴EN=AB;

(3)解:存在.
如圖,設(shè)AM切⊙O于點(diǎn)R,RM=x,EM=y,
∵CB=3,DE=8.
∴DM=DE+EM=y+8,
∴RM2=EM•DM,
即 x2=y(y+8)①,
∵CF是AB的垂直平分線,
∴AC=BC=3,
∴AB=6,
∵AB與AR都是⊙O的切線,
∴AR=AB=6,
∴AM=6+x,CM=CD+DM=9+y,
∵在Rt△ACM中,AM2=AC2+CM2
∴(6+x)2=9+(9+y)2②,
聯(lián)立①②:
②-①得:12x-10y-54=0,
∴x=
5y+27
6
③,
③代入①,整理得:11y2+18y-27=0,
即(11y-81)(y+9)=0,
解得:y=
81
11
或y=-9(舍去),
∴CM=9+y=
180
11
<17.
∴當(dāng)a=
180
11
時(shí),使得AM與⊙O相切.
點(diǎn)評(píng):此題考查了切線的性質(zhì)、切線長(zhǎng)定理、切割線定理、垂徑定理、矩形的判定與性質(zhì)以及勾股定理等知識(shí).此題綜合性很強(qiáng),難度較大,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1998•江西)如圖,已知AB=AC,AE=AD,那么圖中全等三角形共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1998•江西)如圖,已知直角梯形ABCD中,AD∥BC,CD=10,∠C=60°,則AB=
5
3
5
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1998•江西)如圖,已知△ABC是邊長(zhǎng)為4的等邊三角形,AB在x軸上,點(diǎn)C在第一象限,AC交y軸于點(diǎn)D,點(diǎn)A的坐標(biāo)為(-1,0).
(1)求B、C、D三點(diǎn)的坐標(biāo);
(2)拋物線y=ax2+bx+c經(jīng)過(guò)B、C、D三點(diǎn),求它的解析式;
(3)過(guò)點(diǎn)D作DE∥AB交經(jīng)過(guò)B、C、D三點(diǎn)的拋物線于點(diǎn)E,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1998•江西)如圖,在△ABC中,AC=BC,E是內(nèi)心,AE的延長(zhǎng)線交△ABC的外接圓于D.
求證:(1)BE=AE;
(2)
AB
AC
=
AE
DE

查看答案和解析>>

同步練習(xí)冊(cè)答案