【題目】如圖,O的半徑為4BO外一點,連接OB,且OB=6,過點BO的切線BD,切點為D,延長BOO于點A,過點A作切線BD的垂線,垂足為C

1)求證:AD平分BAC;

2)求AC的長.

【答案】1)證明見解析;(2AC=

【解析】

試題分析:1)首先連接OD,由BDO的切線,ACBD,易證得ODAC,繼而可證得AD平分BAC;

2)由ODAC,易證得BOD∽△BAC,然后由相似三角形的對應邊成比例,求得AC的長.

1)證明:連接OD,

BDO的切線,

ODBD

ACBD,

ODAC,

∴∠2=3,

OA=OD,

∴∠1=3

∴∠1=2,

AD平分BAC

2)解:ODAC,

∴△BOD∽△BAC

,

解得:AC=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+ca≠0)的圖象與x軸交于點A、B兩點,與y軸交于點C,對稱軸為直線x=﹣1,點B的坐標為(1,0),則下列結論:①AB=4;②b2﹣4ac0;③ab0;④a2﹣ab+ac0,其中正確的結論有( 。﹤

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,BE=EF=FC,CG=2GD,BG分別交AE,AFMN.下列結論:①AFBG;②BN=NF;③;④.其中正確的結論的序號是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,EAD中點,將ABE沿直線BE折疊后得到GBE,延長BGCDF,若AB=6,BC=,CF的長為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法:①2a+b=0,②當﹣1≤x≤3時,y<0;③3a+c=0;④若(x1,y1)(x2、y2)在函數(shù)圖象上,當0<x1<x2時,y1<y2,其中正確的是( 。

A. ①②④ B. ①③ C. ①②③ D. ①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】101【問題發(fā)現(xiàn)】小明遇到這樣一個問題:

如圖1,ABC是等邊三角形,點DBC的中點,且滿足ADE=60°,DE交等邊三角形外角平分線CE所在直線于點E,試探究ADDE的數(shù)量關系

(1)小明發(fā)現(xiàn),過點DDF//AC,交AC于點F,通過構造全等三角形,經(jīng)過推理論證,能夠使問題得到解決,請直接寫出ADDE的數(shù)量關系: ;

2【類比探究】如圖2,當點D是線段BCB,C任意一點時其它條件

不變,試猜想ADDE之間的數(shù)量關系,并證明你的結論

3【拓展應用】當點D在線段BC的延長線上,且滿足CD=BC其它條件不變時,

請直接寫出ABCADE的面積之比

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰中,腰,,的平分線交,的平分線交.設,則( )

A. k2a B. k3a C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=x2+2x﹣3

(1)寫出它的頂點坐標;

(2)當x取何值時,yx的增大而增大;

(3)求出圖象與x軸的交點坐標.

(4)x取何值時y的值大于0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商家計劃從廠家采購空調和冰箱兩種產(chǎn)品共臺,空調和冰箱的采購單價與銷售單價如表所示:

采購單價

銷售單價

空調

冰箱

若采購空調臺,且所采購的空調和冰箱全部售完,求商家的利潤;

廠家有規(guī)定,采購空調的數(shù)量不少于臺,且空調采購單價不低于元,問商家采購空調多少臺時總利潤最大?并求最大利潤.

查看答案和解析>>

同步練習冊答案