【題目】(2016重慶市第22題)如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第二、四象限內(nèi)的A,B兩點(diǎn),與x軸交于點(diǎn)C,與Y軸交于點(diǎn)D,點(diǎn)B的坐標(biāo)為(m,-4),連接AO,AO=5,sin∠AOC=。
(1)求反比例函數(shù)的解析式;
(2)連接OB,求△AOB的面積。
【答案】(1)、y=-;(2)、3.5
【解析】
試題分析:(1)、首先根據(jù)AO=5,以及sin∠AOC的值得出點(diǎn)A的坐標(biāo),然后求出反比例函數(shù)的解析式;(2)、根據(jù)反比例函數(shù)解析式得出點(diǎn)B的坐標(biāo),然后求出一次函數(shù)的解析式,從而得出點(diǎn)C的坐標(biāo),然后得出△ABC的面積.
試題解析:(1)、∵AO=5, sin∠AOC= ∴點(diǎn)A(-4,3), ∴反比例函數(shù)的解析式為:y=.
(2)、根據(jù)反比例函數(shù)解析式可得:點(diǎn)B(3,-4),
∴直線AB的解析式為y=-x-1,∴點(diǎn)C(-1,0),
∴1×3÷2+1×4÷2=3.5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)把正整數(shù)1,2,3,4,…,2017排列成如圖所示的一個數(shù)表.
(1)用一正方形在表中隨意框住4個數(shù),把其中最小的數(shù)記為x,另三個數(shù)用含x的式子表示出來,從大到小依次是 , , ;
(2)當(dāng)被框住的4個數(shù)之和等于416時,x的值是多少?
(3)被框住的4個數(shù)之和能否等于622?如果能,請求出此時x的值;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用提公因式法分解因式:
(1)6m2n-15n2m+30m2n2;
(2)-4x3+16x2-26x;
(3)x(x+y)+y(x+y).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=kx+b經(jīng)過點(diǎn)A(﹣3,﹣8),且與直線的公共點(diǎn)B的橫坐標(biāo)為6.
(1)求直線y=kx+b的表達(dá)式;
(2)設(shè)直線y=kx+b與y軸的公共點(diǎn)為點(diǎn)C,求△BOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列調(diào)查中,不適合作普查的是( )
A.準(zhǔn)確了解全國人口狀況B.調(diào)查你班每位同學(xué)穿鞋的尺碼
C.學(xué)校招聘教師,對應(yīng)聘人員面試.D.調(diào)查一批燈泡的使用壽命
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,每個最小方格的邊長均為1個單位長,P1,P2,P3,…,均在格點(diǎn)上,其順序按圖中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根據(jù)這個規(guī)律,點(diǎn)P2016的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,.E是邊AB的中點(diǎn),聯(lián)結(jié)DE、CE,且DE⊥CE.設(shè)AD=x,BC=y.
(1)如果∠BCD=60°,求CD的長;
(2)求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍;
(3)聯(lián)結(jié)BD.如果△BCD是以邊CD為腰的等腰三角形,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計(jì)算正確的是( 。
A. a2a3=a6 B. 2a+3b=5ab C. a8÷a2=a6 D. (a2b)2=a4b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是等邊三角形ABC內(nèi)的一點(diǎn),連接PA,PB,PC,以BP為邊作∠PBQ=60,且BQ=BP,連接CQ.
(1)觀察并猜想AP與CQ之間的大小關(guān)系,并證明你的結(jié)論;
(2)若PA=3,PB=4,PC=5,連接PQ,試判斷△PQC的形狀,并說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com