9.計(jì)算:${(\frac{1}{3})}^{-1}$+|1-$\sqrt{3}$|-2sin60°+(π-2016)0-$\root{3}{8}$.

分析 本題涉及負(fù)整數(shù)指數(shù)冪、絕對(duì)值、特殊角的三角函數(shù)值、零指數(shù)冪、立方根5個(gè)考點(diǎn).在計(jì)算時(shí),需要針對(duì)每個(gè)考點(diǎn)分別進(jìn)行計(jì)算,然后根據(jù)實(shí)數(shù)的運(yùn)算法則求得計(jì)算結(jié)果.

解答 解:${(\frac{1}{3})}^{-1}$+|1-$\sqrt{3}$|-2sin60°+(π-2016)0-$\root{3}{8}$
=3+$\sqrt{3}$-1-2×$\frac{\sqrt{3}}{2}$+1-2
=3+$\sqrt{3}$-1-$\sqrt{3}$+1-2
=1.

點(diǎn)評(píng) 本題主要考查了實(shí)數(shù)的綜合運(yùn)算能力,是各地中考題中常見(jiàn)的計(jì)算題型.解決此類題目的關(guān)鍵是熟練掌握負(fù)整數(shù)指數(shù)冪、絕對(duì)值、特殊角的三角函數(shù)值、零指數(shù)冪、立方根等考點(diǎn)的運(yùn)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某批發(fā)市場(chǎng)有中招考試文具套裝,其中A品牌的批發(fā)價(jià)是每套20元,B品牌的批發(fā)價(jià)是每套25元,小王需購(gòu)買A、B兩種品牌的文具套裝共1000套.
(1)若小王按需購(gòu)買A、B兩種品牌文具套裝共用22000元,則各購(gòu)買多少套?
(2)憑會(huì)員卡在此批發(fā)市場(chǎng)購(gòu)買商品可以獲得8折優(yōu)惠,會(huì)員卡費(fèi)用為500元.若小王購(gòu)買會(huì)員卡并用此卡按需購(gòu)買1000套文具套裝,共用了y元,設(shè)A品牌文具套裝買了x包,請(qǐng)求出y與x之間的函數(shù)關(guān)系式.
(3)若小王購(gòu)買會(huì)員卡并用此卡按需購(gòu)買1000套文具套裝,共用了20000元,他計(jì)劃在網(wǎng)店包郵銷售這兩種文具套裝,每套文具套裝小王需支付郵費(fèi)8元,若A品牌每套銷售價(jià)格比B品牌少5元,請(qǐng)你幫他計(jì)算,A品牌的文具套裝每套定價(jià)不低于多少元時(shí)才不虧本(運(yùn)算結(jié)果取整數(shù))?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

20.(1)閱讀理解:
如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
解決此問(wèn)題可以用如下方法:延長(zhǎng)AD到點(diǎn)E使DE=AD,再連接BE(或?qū)ⅰ鰽CD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷.
中線AD的取值范圍是2<AD<8;
(2)問(wèn)題解決:
如圖②,在△ABC中,D是BC邊上的中點(diǎn),DE⊥DF于點(diǎn)D,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,求證:BE+CF>EF;
(3)問(wèn)題拓展:
如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C為頂點(diǎn)作一個(gè)70°角,角的兩邊分別交AB,AD于E、F兩點(diǎn),連接EF,探索線段BE,DF,EF之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.三元一次方程組$\left\{\begin{array}{l}2x-3y+4z=3\\ 3x-2y+z=7\\ x+2y-3z=1\end{array}\right.$的解為(  )
A.$\left\{\begin{array}{l}x=-2\\ y=1\\ z=-3\end{array}\right.$B.$\left\{\begin{array}{l}x=-3\\ y=-2\\ z=1\end{array}\right.$C.$\left\{\begin{array}{l}x=1\\ y=-3\\ z=-2\end{array}\right.$D.$\left\{\begin{array}{l}x=1\\ y=-2\\ z=-3\end{array}\right.$

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知某種紙張的厚度為0.0002米,0.0002用科學(xué)記數(shù)法表示為2×10-4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.解方程:
(1)36(-x+1)2=25         
(2)2(x-1)3=-$\frac{125}{4}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.解下列方程(組)
①3x=1+2(x-2)
②$\frac{x-1}{2}-\frac{2x+1}{3}=1$
③$\left\{\begin{array}{l}{2x+y=1}\\{3x-2y=5}\end{array}\right.$
④$\left\{\begin{array}{l}{a-2b=4}\\{2a+b+2=0}\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.對(duì)x,y定義一種新運(yùn)算T,規(guī)定:T(x,y)=$\frac{ax+by}{x+y}$(其中a,b均為非零常數(shù)),這里等式右邊是通常的四則運(yùn)算,例如:T(0,1)=$\frac{a×0+b×1}{0+1}$=b,已知T(1,1)=2.5,T(4,-2)=4.
(1)求a,b的值;
(2)若關(guān)于m的不等式組$\left\{\begin{array}{l}{T(4m,5-4m)≤3}\\{T(2m,3-2m)>P}\end{array}\right.$恰好有2個(gè)整數(shù)解,求實(shí)數(shù)P的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.選擇適當(dāng)?shù)姆椒ń庀铝蟹匠?br />(1)3x2-x-4=0
(2)(x-1)2=4(x-5)2

查看答案和解析>>

同步練習(xí)冊(cè)答案