【題目】如圖,已知△ABC中,∠B=90 ,AB=8cm,BC=6cm,P、Q是△ABC邊上的兩個(gè)動(dòng)點(diǎn),其中點(diǎn)P從點(diǎn)A開(kāi)始沿A→B方向運(yùn)動(dòng),且速度為每秒1cm,點(diǎn)Q從點(diǎn)B開(kāi)始沿B→C→A方向運(yùn)動(dòng),且速度為每秒2cm,它們同時(shí)出發(fā),設(shè)出發(fā)的時(shí)間為t秒.
(1)出發(fā)2秒后,求線段PQ的長(zhǎng)?
(2)當(dāng)點(diǎn)Q在邊BC上運(yùn)動(dòng)時(shí),出發(fā)幾秒鐘后,△PQB是等腰三角形?
(3)當(dāng)點(diǎn)Q在邊CA上運(yùn)動(dòng)時(shí),求能使△BCQ成為等腰三角形的運(yùn)動(dòng)時(shí)間?
【答案】(1) ; (2)t=83;(3)當(dāng)t為5.5秒或6秒或6.6秒時(shí),△BCQ為等腰三角形.
【解析】(1)根據(jù)點(diǎn)P、Q的運(yùn)動(dòng)速度求出AP,再求出BP和BQ,用勾股定理求得PQ即可;
(2)設(shè)出發(fā)t秒后,△PQB能形成等腰三角形,則BP=BQ,由BQ=2t,BP=8-t,列式求得t即可;
(3)當(dāng)點(diǎn)Q在CA上運(yùn)動(dòng)上,能使△BCQ成為等腰三角形的運(yùn)動(dòng)時(shí)間有三種情況:
①當(dāng)CQ=BQ時(shí)(圖1)則∠C=∠CBQ,可證明∠A=∠ABQ,則BQ=AQ,則CQ=AQ,從而求得t;
②當(dāng)CQ=BC時(shí)(圖2),則BC+CQ=12,易求得t;
③當(dāng)BC=BQ時(shí)(圖3),過(guò)B點(diǎn)作BE⊥AC于點(diǎn)E,則求得BE、CE,即可得出t.
解:(1)BQ=2×2=4cm,BP=ABAP=82×1=6cm,
∵∠B=90°,
PQ=;
(2)BQ=2t,
BP=8t,
2t=8t,
解得:t=83;
(3)①當(dāng)CQ=BQ時(shí)(圖1),
則∠C=∠CBQ,
∵∠ABC=90°,
∴∠CBQ+∠ABQ=90°,
∠A+∠C=90°,
∴∠A=∠ABQ,
∴BQ=AQ,
∴CQ=AQ=5,
∴BC+CQ=11,
∴t=11÷2=5.5秒.
②當(dāng)CQ=BC時(shí)(如圖2),
則BC+CQ=12
∴t=12÷2=6秒
③當(dāng)BC=BQ時(shí)(如圖3),過(guò)B點(diǎn)作BE⊥AC于點(diǎn)E,
則BE=,
所以CE=BC2BE2,
故CQ=2CE=7.2,
所以BC+CQ=13.2,
∴t=13.2÷2=6.6秒.
由上可知,當(dāng)t為5.5秒或6秒或6.6秒時(shí),
△BCQ為等腰三角形.
“點(diǎn)睛”本題考查了勾股定理、三角形的面積以及等腰三角形的判定和性質(zhì),注意分類討論思想的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若點(diǎn)A(3,-2)與點(diǎn)B關(guān)于Y軸對(duì)稱,則點(diǎn)B的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC的中點(diǎn),兩邊PE,PF分別交AB,AC于點(diǎn)E,F(xiàn),當(dāng)∠EPF在△ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)(點(diǎn)E不與A,B重合).現(xiàn)給出以下四個(gè)結(jié)論:(1)AE=CF;(2)△EPF是等腰直角三角形;(3);(4)EF=AP.上述結(jié)論中始終正確的結(jié)論有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下面的圖形中,對(duì)稱軸條數(shù)最少的圖形是( )
A.圓B.長(zhǎng)方形C.正三角形D.正六邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線AB、CD被直線EF所截,FG平分∠EFD,∠1=∠2=80°,求∠BGF的度數(shù).
解:因?yàn)?/span>∠1=∠2=80°(已知),
所以AB∥CD__________
所以∠BGF+∠3=180°__________
因?yàn)?/span>∠2+∠EFD=180°(鄰補(bǔ)角的性質(zhì)).
所以∠EFD=________.(等式性質(zhì)).
因?yàn)?/span>FG平分∠EFD(已知).
所以∠3=________∠EFD(角平分線的性質(zhì)).
所以∠3=________.(等式性質(zhì)).
所以∠BGF=________.(等式性質(zhì)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016浙江省舟山市第24題)小明的爸爸和媽媽分別駕車從家同時(shí)出發(fā)去上班,爸爸行駛到甲處時(shí),看到前面路口時(shí)紅燈,他立即剎車減速并在乙處停車等待,爸爸駕車從家到乙處的過(guò)程中,速度v(m/s)與時(shí)間t(s)的關(guān)系如圖1中的實(shí)線所示,行駛路程s(m)與時(shí)間t(s)的關(guān)系如圖2所示,在加速過(guò)程中,s與t滿足表達(dá)式s=at2
(1)根據(jù)圖中的信息,寫(xiě)出小明家到乙處的路程,并求a的值;
(2)求圖2中A點(diǎn)的縱坐標(biāo)h,并說(shuō)明它的實(shí)際意義;
(3)爸爸在乙處等代理7秒后綠燈亮起繼續(xù)前行,為了節(jié)約能源,減少剎車,媽媽駕車從家出發(fā)的行駛過(guò)程中,速度v(m/s)與時(shí)間t(s)的關(guān)系如圖1中的折線O﹣B﹣C所示,行駛路程s(m)與時(shí)間t(s)的關(guān)系也滿足s=at2,當(dāng)她行駛到甲處時(shí),前方的綠燈剛好亮起,求此時(shí)媽媽駕車的行駛速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB=AC,AE=AF,BE與CF交于點(diǎn)D,則對(duì)于下列結(jié)論:
①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分線上.
其中正確的是( )
A. ① B. ② C. ①和② D. ①②③
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com