【題目】如圖1,在四邊形ABCD中,BA=BC,∠ABC=60°,∠ADC=30°,連接對角線BD

(1)將線段CD繞點C順時針旋轉(zhuǎn)60°得到線段CE,連接AE

①依題意補全圖1;

②試判斷AEBD的數(shù)量關(guān)系,并證明你的結(jié)論;

(2)在(1)的條件下,直接寫出線段DA、DBDC之間的數(shù)量關(guān)系;

(3)如圖2,F是對角線BD上一點,且滿足∠AFC=150°,連接FAFC,探究線段FA、FBFC之間的數(shù)量關(guān)系,并證明.

【答案】(1)①圖形見解析②AE=BD(2)判斷: (3)判斷,證明見解析

【解析】試題分析:(1)①根據(jù)題意畫圖即可;

②連接AC,證明△BCD≌△ACE即可;

(2)連接DE,可證三角形ADE為直角三角形,由勾股定理即可得出結(jié)論;

(3)將線段CF繞點C順時針旋轉(zhuǎn)60°得到線段CE,連接EF、EA,證明△BCD≌△ACE和直角三角形AEF,結(jié)合勾股定理即可證明.

試題解析(1)①補全圖形,如圖1

②判斷: AE=BD

證明:如圖2,連接AC,∵BA=BC,且∠ABC=60° ∴△ABC是等邊三角形

∴∠ACB=60°,且CA=CB∵將線段CD繞點C順時針旋轉(zhuǎn)60°得到線段CE CD=CE,且∠DCE=60°

∴∠BCD=∠ACE

∴△BCD≌△ACESAS) ∴AE=BD

(2)判斷:

(3)判斷:

證明:如圖3,連接AC,∵BA=BC,且∠ABC=60°

∴△ABC是等邊三角形,∴∠ACB=60°,且CA=CB

將線段CF繞點C順時針旋轉(zhuǎn)60°得到線段CE,連接EFEA

CE=CF,且∠FCE=60°,∴△CEF是等邊三角形

∴∠CFE=60°,且FE=FC,∴∠BCF=∠ACE

∴△BCF≌△ACESAS),∴AE=BF

∵∠AFC=150°, ∠CFE=60°,∴∠AFE=90°

RtAEF中, 有:

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市將甲、乙兩種商品進價各自提價30%后,又同時降價30元出售,售出后兩種商品的總利潤為60元,則甲、乙兩種商品進價之和為元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x=2是一元二次方程x2﹣2mx+4=0的一個解,則m的值為(
A.2
B.0
C.0或2
D.0或﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2﹣2x+3與x軸交于點AB,把拋物線在x軸及其上方的部分記作C1,將C1關(guān)于點B中心對稱得C2C2x軸交于另一點C,將C2關(guān)于點C中心對稱得C3,連接C1C3的頂點,則圖中陰影部分的面積為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,正方形ABCD的位置如圖所示,點A的坐標為(1,0),點D的坐標為(0,2).延長CB交x軸于點A1 , 作正方形A1 B1 C1 C;延長C1B1交x軸于點A2 , 作正方形A2B2C2C1…按這樣的規(guī)律進行下去,若正方形ABCD算第一個正方形,則第2010個正方形的面積為(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下面文字,然后按要求解題

1+2+3+…+100=?如果一個一個順次相加顯然太麻煩,我們仔細分析這100個連續(xù)自然數(shù)的規(guī)律和特點可以發(fā)現(xiàn)運用加法的運算律,是可以大大簡化計算,提高計算速度的.因為1+100=2+99=3+98=…=50+51=101所以將所給算式中各加數(shù)經(jīng)過交換、結(jié)合以后,可以很快求出結(jié)果

 1+2+3+4+5+…+100

=1+100+2+99+3+98+…+50+51

=101× =

1補全例題解題過程

2請猜想1+2+3+4+5+6+…+2n﹣2+2n﹣1+2n=

3試計算a+a+b+a+2b+a+3b+…+a+99b).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形ABCO是正方形,已知點C的坐標為( , 1),則點B的坐標為(  )

A.(﹣1,+1)
B.(﹣1,1)
C.(1,+1)
D.(﹣1,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分8分)某種電子產(chǎn)品共件,其中有正品和次品.已知從中任意取出一件,取得的產(chǎn)品為次品的概率為

(1)該批產(chǎn)品有正品 件;

(2)如果從中任意取出件,利用列表或樹狀圖求取出件都是正品的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值3a2bab2)﹣22a2b1+3ab21,其中a=﹣2,b1

查看答案和解析>>

同步練習(xí)冊答案