【題目】如圖,在平面直角坐標系xOy中,直線 與雙曲線 相交于A、B兩點,且A點橫坐標為2,C是第一象限內(nèi)雙曲線上一點,連接CA并延長交y軸于點D,連接BD,BC.
(1)k的值是________;
(2)若AD=AC,則△BCD的面積是________.
【答案】6 18
【解析】
(1)將A點橫坐標代入y=x求得點A坐標為(2,3),再將A點坐標代入反比例函數(shù)解析式求得k值.
(2)依題可設(shè)點C(a,),根據(jù)中點坐標定義求得a值,從而可得C點坐標為(4,),和D點,根據(jù)正比例函數(shù)與反比例函數(shù)交點性質(zhì)可得B(-2,-3),再由B,C的坐標求出直線BC與y軸的交點,S△BAC= S△BDE+ S△BE,即可求得答案.
解:(1)∵ A點橫坐標為2, 且點A在直線y=x上,
∴y=×2=3,
∴A(2,3),
又∵點A在反比例函數(shù)y=上,
∴k=2×3=6,
故答案為:6.
(2)設(shè)點C(a,),
∵AD=AC,
∴點A是線段CD的中點,
∴a+0=4,
即a=4,
∴C(4,),D(0, )
∵A(2,3),直線y=x與反比例函數(shù)y=相交于A、B兩點,
∴B(-2,-3),
∵直線AB的解析式為:y=x,
直線BC的解析式為:,設(shè)BC與y軸的交點為E,則E(0, ),
∴S△BAC= S△BDE+ S△BEC=.
故答案為:18.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)市政府“綠色出行”的號召,小張上班由自駕車改為騎公共自行車.已知小張家距上班地點10千米.他用騎公共自行車的方式平均每小時行駛的路程比他用自駕車的方式平均每小時行駛的路程少45千米,他從家出發(fā)到上班地點,騎公共自行車方式所用的時間是自駕車方式所用的時間的4倍.設(shè)小張用騎公共自行車方式上班平均每小時行駛x千米,根據(jù)題意,可列方程為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在一次社會實踐活動中,組織學(xué)生參觀了虎園、烈士陵園、博物館和植物園,為了解本次社會實踐活動的效果,學(xué)校隨機抽取了部分學(xué)生,對“最喜歡的景點”進行了問卷調(diào)查,并根據(jù)統(tǒng)計結(jié)果繪制了如下不完整的統(tǒng)計圖.其中最喜歡烈士陵園的學(xué)生人數(shù)與最喜歡博物館的學(xué)生人數(shù)之比為2:1,請結(jié)合統(tǒng)計圖解答下列問題:
(1)本次活動抽查了 名學(xué)生;
(2)請補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,最喜歡植物園的學(xué)生人數(shù)所對應(yīng)扇形的圓心角是 度;
(4)該校此次參加社會實踐活動的學(xué)生有720人,請求出最喜歡烈士陵園的人數(shù)約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將半徑為1,圓心角為120°的扇形OAB繞點A逆時針旋轉(zhuǎn)一個角度,使點O的對應(yīng)點D落在弧AB上,點B的對應(yīng)點為C,連接BC,則圖中CD、BC和弧BD圍成的封閉圖形面積是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知拋物線與x軸交于點A、在B左側(cè),與y軸交于點C,經(jīng)過點A的射線AF與y軸正半軸相交于點E,與拋物線的另一個交點為F,,點D是點C關(guān)于拋物線對稱軸的對稱點,點P是y軸上一點,且,則點P的坐標是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,有,如圖, △DEF的三個頂點D,E,F分別在△ABC的邊BC,AC,AB上.
(1)已知點F是AB的中點.
①如圖①,若△DEF是等邊三角形,試直接寫出正△DEF的邊長;
②如圖②,若, △DEF 的面積為10,求CD的長;
(2)若,DF=DE, △DEF的面積是否存在最小值?若存在,求此時CD的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】發(fā)現(xiàn)
如圖1,在有一個“凹角∠A1A2A3”n邊形A1A2A3A4……An中(n為大于3的整數(shù)),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠An﹣(n﹣4)×180°.
驗證
(1)如圖2,在有一個“凹角∠ABC”的四邊形ABCD中,證明:∠ABC=∠A+∠C+∠D.
(2)證明3,在有一個“凹角∠ABC”的六邊形ABCDEF中,證明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.
延伸
(3)如圖4,在有兩個連續(xù)“凹角A1A2A3和∠A2A3A4”的四邊形A1A2A3A4……An中(n為大于4的整數(shù)),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠An﹣(n﹣ )×180°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,正方形ABCD的位置如圖所示,點A的坐標為(1,0),點D的坐標為(0,2).延長CB交x軸于點A1,作第1個正方形A1B1C1C;延長C1B1交x軸于點A2,作第2個正方形A2B2C2C1,…,按這樣的規(guī)律進行下去,第2016個正方形的面積是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在菱形ABCD中,AB=AC,點E、F分別在邊AB、BC上,且AE=BF,CE與AF相交于點G.
(1)求證:∠FGC=∠B;
(2)延長CE與DA的延長線交于點H,求證:BECH=AFAC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com