【題目】觀察下列各式

x1)(x+1)=x21

x1)(x2+x+1)=x31

x1)(x3+x2+x+1)=x41

1)根據(jù)以上規(guī)律,則(x1)(x6+x5+x4+x3+x2+x+1)=   

2)你能否由此歸納出一般規(guī)律(x1)(xn+xn1+……+x+1)=   ;

3)根據(jù)以上規(guī)律求32018+32017+32016+…32+3+1的結(jié)果.

【答案】(1)x7﹣1;(2)xn+1﹣1;(3)

【解析】

(1)仿照已知等式求出所求原式的值即可;

(2)歸納總結(jié)得到一般性規(guī)律,寫出即可;

(3)原式變形后,利用得出的規(guī)律變形,計(jì)算即可求出值.

(1)根據(jù)題中規(guī)律得:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;

(2)總結(jié)題中規(guī)律得:(x﹣1)(xn+xn1+…+x+1)=xn+1﹣1;

(3)原式=×(3﹣1)×(32018+32017+…+32+3+1)=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一架梯子AB長(zhǎng)13米,斜靠在一面墻上,梯子底端離墻5米.(1)這個(gè)梯子的頂端距地面有多高?(2)如果梯子的頂端下滑了5米,那么梯子的底端在水平方向滑動(dòng)了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把棱長(zhǎng)為1cm的若干個(gè)小正方體擺放成如圖所示的幾何體,然后在露出的表面上涂上顏色(不含底面)

(1)該幾何體中有 小正方體?

(2)其中兩面被涂到的有 個(gè)小正方體;沒(méi)被涂到的有 個(gè)小正方體;

(3)求出涂上顏色部分的總面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如圖(1),根據(jù)勾股定理,則a2+b2=c2,若△ABC不是直角三角形,如圖(2)和圖(3),請(qǐng)你類比勾股定理,試猜想a2+b2與c2的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,、的交點(diǎn)為,現(xiàn)作如下操作:

第一次操作,分別作的平分線,交點(diǎn)為,

第二次操作,分別作的平分線,交點(diǎn)為,

第三次操作,分別作的平分線,交點(diǎn)為,

次操作,分別作的平分線,交點(diǎn)為

度,那等于__________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列算式:

①1×3-22=3-4=-1;

②2×4-32=8-9=-1;

③3×5-42=15-16=-1;

(1)請(qǐng)按照以上規(guī)律寫出第10個(gè)等式。

(2)請(qǐng)按照以上規(guī)律寫出第n個(gè)等式。

(3)(2)中的式子一定成立嗎?若不一定成立,請(qǐng)舉出反例;若一定成立,請(qǐng)說(shuō)出理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)y= 的圖象在第一象限交于點(diǎn)A(4,3),與y軸的負(fù)半軸交于點(diǎn)B,且OA=OB.

(1)求函數(shù)y=kx+b和y= 的表達(dá)式;
(2)已知點(diǎn)C(0,5),試在該一次函數(shù)圖象上確定一點(diǎn)M,使得MB=MC,求此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,已知AB=AC,AB的垂直平分線交AB于點(diǎn)N,交AC于點(diǎn)M,連接MB.

(1)若∠ABC=70°,則∠NMA的度數(shù)是   度.

(2)若AB=8cm,MBC的周長(zhǎng)是14cm.

①求BC的長(zhǎng)度;

②若點(diǎn)P為直線MN上一點(diǎn),請(qǐng)你直接寫出△PBC周長(zhǎng)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.

(1)求證:△ABC≌△ADE;

(2)求∠FAE的度數(shù);

(3)求證:CD=2BF+DE.

查看答案和解析>>

同步練習(xí)冊(cè)答案