分析 根據角平分線上的點到角的兩邊距離相等可得CD=DE,再利用“HL”證明Rt△ACD和Rt△AED全等,根據全等三角形對應邊相等可得AC=AE,可求出BE,再利用勾股定理列式求出BC,最后根據三角形的周長列式計算即可得解.
解答 解:∵AD是∠CAB的平分線,∠C=90°,DE⊥AB于E,
∴CD=DE,
在Rt△ACD和Rt△AED中,
$\left\{\begin{array}{l}{AD=AD}\\{DC=DE}\end{array}\right.$,
∴Rt△ACD≌Rt△AED(HL),
∴AC=AE=6,
∴BE=AB-AE=10-6=4,
由勾股定理得,BC=$\sqrt{{AB}^{2}{-AC}^{2}}$=$\sqrt{{10}^{2}{-6}^{2}}$=8,
∴△BDE的周長=BE+BD+CD=BE+BD+CD=BE+BC=4+8=12(cm).
故答案為:12.
點評 本題考查了角平分線上的點到角的兩邊距離相等的性質,全等三角形的判定與性質,勾股定理,熟記性質并求出三角形全等是解題的關鍵.
科目:初中數學 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com