【題目】如圖,把一個菱形繞著它的對角線的交點旋轉(zhuǎn)90°,旋轉(zhuǎn)前后的兩個菱形構(gòu)成一個“星形”(陰影部分),若菱形的一個內(nèi)角為60°,邊長為2,則該“星形”的面積是

【答案】
【解析】解:在圖中標上字母,令AB與A′D′的交點為點E,過E作EF⊥AC于點F,如圖所示.

∵四邊形ABCD為菱形,AB=2,∠BAD=60°,
∴∠BAO=30°,∠AOB=90°,
∴AO=ABcos∠BAO= ,BO=ABsin∠BAO=1.同理可知:A′O= ,D′O=1,
∴AD′=AO﹣D′O= ﹣1.
∵∠A′D′O=90°﹣30°=60°,∠BAO=30°,
∴∠AED′=30°=∠EAD′,
∴D′E=AD′= ﹣1.在Rt△ED′F中,ED′= ﹣1,∠ED′F=60°,
∴EF=ED′sin∠ED′F=
∴S陰影=S菱形ABCD+4SADE= ×2AO×2BO+4× AD′EF=6 ﹣6.
故答案為:6 ﹣6.
根據(jù)菱形的性質(zhì)以及AB=2,∠BAD=60°,可得出線段AO和BO的長度,同理找出A′O、D′O的長度,結(jié)合線段間的關(guān)系可得出AD′的長度,通過角的計算得出∠AED′=30°=∠EAD′,即找出D′E=AD′,再通過解直角三角形得出線段EF的長度,利用分割圖形法結(jié)合三角形的面積公式以及菱形的面積公式即可求出陰影部分的面積.本題考查了菱形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、解直角三角形、菱形的面積公式以及三角形的面積公式,解題的關(guān)鍵是求出△AD′E的面積.本題屬于中檔題,難度不小,歷年來時常會考到周長,今年碰到了求面積,解決該題的技巧是分割圖形,將陰影部分分割成菱形與四個全等的三角形,求出其中任意一個三角形的面積是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知函數(shù)的圖象與x軸、y軸分別交于點A,B,與函數(shù)y=x的圖象交于點M,點M的橫坐標為2.在x軸上有一點P (a,0)(其中a>2),過點P作x軸的垂線,分別交函數(shù)和y=x的圖象于點C,D.

(1)求點A的坐標;

(2)若OB=CD,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C是的中點,⊙O的切線BD交AC的延長線于點D,E是OB的中點,CE的延長線交切線BD于點F,AF交⊙O于點H,連接BH.

(1)求證:AC=CD;
(2)若OC=,求BH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從﹣3,﹣1, ,1,3這五個數(shù)中,隨機抽取一個數(shù),記為a,若數(shù)a使關(guān)于x的不等式組 無解,且使關(guān)于x的分式方程 =﹣1有整數(shù)解,那么這5個數(shù)中所有滿足條件的a的值之和是(  )
A.﹣3
B.﹣2
C.﹣
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,任意一個正整數(shù)n都可以進行這樣的分解:n=p×q(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱p×q是n的最佳分解.并規(guī)定:F(n)= .例如12可以分解成1×12,2×6或3×4,因為12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)=
(1)如果一個正整數(shù)a是另外一個正整數(shù)b的平方,我們稱正整數(shù)a是完全平方數(shù).求證:對任意一個完全平方數(shù)m,總有F(m)=1;
(2)如果一個兩位正整數(shù)t,t=10x+y(1≤x≤y≤9,x,y為自然數(shù)),交換其個位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為18,那么我們稱這個數(shù)t為“吉祥數(shù)”,求所有“吉祥數(shù)”中F(t)的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法:

(1)在同一平面內(nèi),不相交的兩條直線一定平行.(2)在同一平面內(nèi),不相交的兩條線段一定平行.(3)相等的角是對頂角.(4)兩條直線被第三條直線所截,同位角相等.(5)兩條平行線被第三條直線所截,一對內(nèi)錯角的角平分線互相平行.其中,正確說法的個數(shù)是(

A. 1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,過點B作BE⊥AD,BF⊥CD,垂足分別為點E,F(xiàn),延長BD至G,使得DG=BD,連結(jié)EG,F(xiàn)G,若AE=DE,則 =

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠BAC的平分線交BC于點O,OC=1,以點O為圓心OC為半徑作半圓.

(1)求證:AB為⊙O的切線;
(2)如果tan∠CAO= ,求cosB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半徑為3的⊙O與Rt△AOB的斜邊AB切于點D,交OB于點C,連接CD交直線OA于點E,若∠B=30°,則線段AE的長為

查看答案和解析>>

同步練習冊答案