如圖,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.
(1)寫出圖中兩對(duì)相似三角形(不得添加字母和線);
(2)請(qǐng)分別說明兩對(duì)三角形相似的理由.

解:(1)△ABC∽△ADE,△ABD∽△ACE

(2)①證△ABC∽△ADE,
∵∠BAD=∠CAE,
∠BAD+∠DAC=∠CAE+∠DAC,
即∠BAC=∠DAE.
又∵∠ABC=∠ADE,
∴△ABC∽△ADE.

②證△ABD∽△ACE,
∵△ABC∽△ADE,

又∵∠BAD=∠CAE,
∴△ABD∽△ACE.
分析:(1)△ABC∽△ADE,△ABD∽△ACE;
(2)∠BAD=∠CAE,在此等式兩邊各加∠DAC,可證∠BAC=∠DAE,再結(jié)合已知中的∠ABC=∠ADE,可證△ABC∽△ADE;利用△ABC∽△ADE,可得AB:AD=AC:AE,再結(jié)合∠BAD=∠CAE,也可證△BAD∽△CAE.
點(diǎn)評(píng):本題利用了等量加等量和相等、相似三角形的判定和性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、已知,如圖,在△ABC和△EDB中,∠ACB=∠EBD=90°,點(diǎn)E在BC上,DE⊥AB交AB于F,且AB=ED.求證:DB=BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC和△DEF中,AC∥DE,∠EFD與∠B互補(bǔ),DE=mAC(m>1).試探索線段EF與AB的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC和△ABD中,∠C=∠D=90°,若利用“AAS”證明△ABC≌△ABD,則需要加條件
∠CAB=∠DAB或∠CBA=∠DBA
∠CAB=∠DAB或∠CBA=∠DBA
,若利用“HL”證明△ABC≌△ABD,則需要加條件
BD=BC或AD=AC
BD=BC或AD=AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC和△ABD中,AC⊥BC,AD⊥BD,E是AB邊上的中點(diǎn).則DE
=
=
CE.(填>、=、<)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC和△DEF中,∠A=∠D,∠C=∠F,AC=DF,請(qǐng)說明AE=BD的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案